Skip to main content
Log in

Latent-TGF-β: An overview

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The latency associated with the transforming growth factor-betas (TGF-betas) was discovered in 1984. Since the two publications on this subject in that year, there has been on average over sixty reports in which latency was the dominant theme for each of the past 10 years, proof enough of the interest in this field of growth factor research. As the mature 25 kD forms of the TGF-betas are required for them to exert their many, diverse biological effects, it was inevitable that an explanation of the structure and of the activation of the latent complexes be sought. This overview provides a description of these essential points. Now that it has been clearly shown that dysregulation of particular components of the TGF-β signalling pathway is implicated in many human diseases, the activation of the latent TGF-β complexes has taken on added importance. Technical improvements enable the distinction of active and latent TGF-β proteins in vivo and have started to reveal anomalies in the control of activation in relation to various pathological situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moses HL, Branum EL, Proper JA, Robinson RA: Transforming growth factor production by chemically transformed cells. Cancer Res 41: 2842–2848, 1981

    Google Scholar 

  2. Roberts AB, Anzano MA, Lamb LC, Smith JM, Sporn MB: New class of transforming growth factors potentiated by epidermal growth factor: Isolation from non neoplastic tissues. Proc Natl Acad Sci USA 78: 5339–5343, 1981

    Google Scholar 

  3. Roberts AB, Sporn MB: In: Peptide Growth Factors and their Receptors, Springer, Berlin, 1990

    Google Scholar 

  4. Lawrence DA, Pircher R, Krycève-Martinerie C, Jullien P: Normal embryo fibroblasts release transforming growth factors in a latent form. J Cell Physiol 121: 184–188, 1984

    Google Scholar 

  5. Tucker RF, Shipley GD, Moses HL, Holley RW: Growth inhibitor from BSC-1 cells closely related to the platelet type β transforming growth factor. Science 226: 705–707, 1984

    Google Scholar 

  6. Barnard JA, Lyons RM, Moses HL: The cell biology of transforming growth factor-β. Biochim Biophys Acta 1032: 79–87, 1990

    Google Scholar 

  7. Brown PD, Wakefield LM, Levinson AD, Sporn MB: Physicochemical activation of recombinant latent Transforming Growth Factor-betas 1, 2 and 3. Growth Factors 3: 35–43, 1990

    Google Scholar 

  8. Derynck R: TGF-β-receptor-mediated signaling. Trends Biochem Sci 19: 548–553, 1994

    Google Scholar 

  9. Massagué J, Wotton D: Transcriptional control by the TGF-β/Smad signaling system. EMBO J 19: 1745–1754, 2000

    Google Scholar 

  10. Robson MC, Mustoe TA, Hunt TK: The future of recombinant growth factors in wound healing. Am J Surg 176 (suppl 2A): 80S–82S, 1998

    Google Scholar 

  11. Calabresi PA, Fields NS, Maloni HW, Hanham A, Carlino J, Moore J, Levin MC, Dhib-Jalbut S, Tranquill LR, Austin H, McFarland HF, Racke MK: Phase I trial of transforming growth factor beta 2 in chronic progressive MS. Neurology 51: 289–292, 1998

    Google Scholar 

  12. Thompson JT, Smiddy WE, William GA, Sjaarda RN, Flynn HW Jr, Margherio RR, Abrams GW: Comparison of recombinant transforming growth factor-beta-2 and placebo as an adjunctive agent for macular hole surgery. Ophthalmology 105: 700–706, 1998

    Google Scholar 

  13. Wymenga AN, van der Graaf WT, Hofstra LS, Spijkervet FK, Timens W, Timmer-Bosscha H, Sluiter WJ, van Buuren AH, Mulder NH, de Vries EG: Phase I study of transforming growth factor-beta-3 mouthwashes for prevention of chemotherapy-induced mucositis. Clin Cancer Res. 5: 1363–1368, 1999

    Google Scholar 

  14. Lawrence DA: Transforming growth factor-β: A general review. Eur Cytokine Netw 7: 363–374, 1996

    Google Scholar 

  15. Lawrence DA, Pircher R, Jullien P: Conversion of a high molecular weight latent beta-TGF from chicken embryo fibroblasts into a low molecular weight active beta-TGF under acidic conditions. Biochem Biophys Res Comm 133: 1026–1034, 1985

    Google Scholar 

  16. Pircher R, Jullien P, Lawrence DA: Beta-transforming growth factor is stored in human blood platelets as a latent high molecular weight complex. Biochem Biophys Res Comm 136: 30–37, 1986

    Google Scholar 

  17. Miyazono K, Ichijo H, Heldin C-H: Transforming Growth Factor-βb: latent forms, binding proteins and receptors. Growth Factors 8: 11–22, 1993

    Google Scholar 

  18. Dubois CM, Laprise MH, Blanchette F, Gentry LE, Leduc R: Processing of transforming growth factor β1 precursor by human furin convertase. J Biol Chem 270: 10618–10624, 1995

    Google Scholar 

  19. Miyazono K, Olofsson A, Colosetti P, Heldin C-H: A role of the latent TGF-β1-binding protein in the assembly and secretion of TGF-β1. EMBO J 10: 1091–1101, 1991

    Google Scholar 

  20. Saharinen J, Hyytiäinen M, Taipale J, Keski-Oja J: Latent transforming growth factor-β binding proteins (LTBPs) - structural extracellular matrix proteins for targeting TGF-β action. Cytokine Growth Factor Rev 10: 99–117, 1999

    Google Scholar 

  21. Barrett AJ: α2-Macroglobulin. Methods Enzymol 80: 737–754, 1981

    Google Scholar 

  22. Negoescu A, Labat-Moleur F, Brambilla E, Chambaz EM, Feige J-J: Steroidogenic adrenocortical cells synthesize alpha 2-macroglobulin in vitro, not in vivo. Mol Cell Endocrinol 105: 155–163, 1994

    Google Scholar 

  23. van Leuven F, Cassiman JJ, van den Berghe H: Demonstration of an alpha 2-macroglobulin receptor in human fibroblasts, absent in tumorderived cell lines. J Biol Chem 254, 5155–5160, 1979

    Google Scholar 

  24. Crookston KP, Webb DJ, Wolf BB, Gonias SL: Classification of a2-macroglobulin-cytokine interactions based on affinity of noncovalent association in solution under apparent equilibrium conditions. J Biol Chem 269: 1533–1540, 1994

    Google Scholar 

  25. McCaffrey TA, Falcone DJ, Brayton CF, Agarwal LA, Welt FGP, Weksler BB: Transforming growth factor-β activity is potentiated by heparin via dissociation of the transforming growth factor-β/α2-macroglobulin inactive complex. J Cell Biol 109: 441–448, 1989

    Google Scholar 

  26. Feige J-J, Negoescu A, Keramidas M, Souchelnitskiy S, Chambaz EM: α2-macroglobulin: A binding protein for TGF-β and various cytokines. Horm Res 45: 227–232, 1996

    Google Scholar 

  27. Hildebrand A, Romaris M, Rasmussen LM, Heinegard D, Twardzik DR, Border WA, Ruoslahti E: Interaction of the small interstitial proteoglycans biglycan, decorin and fibromodulin with transforming growth factor beta. Biochem J 302: 527–534, 1994

    Google Scholar 

  28. Schonherr E, Broszat M, Brandan E, Bruckner P, Kresse H: Decorin core protein fragment leu155-val260 interacts with TGF-β but does not compete for Decorin binding to type I Collagen. Arch Biochem Biophys 355: 241–248, 1998

    Google Scholar 

  29. Hausser H, Schonherr E, Muller M, Liszio C, Bin Z, Fisher LW, Kresse H: Receptor-mediated endocytosis of deocorin: Involvement of leucine-rich repeat structures. Arch Biochem Biophys 15: 363–370, 1998

    Google Scholar 

  30. Isaka Y, Brees DK, Ikegaya K, Kaneda Y, Imai E, Noble NA, Border WA: Gene therapy by skeletal muscle expression of decorin prevents fibrotic disease in rat kidney. Nat Med 2: 418–423, 1996

    Google Scholar 

  31. Hausser H, Groning A, Hasilik A, Schonherr E, Kresse H: Selective inactivity of TGF-β/decorin complexes. FEBS Lett 353: 243–245, 1994

    Google Scholar 

  32. Altman DJ, Schneider SL, Thompson DA, Cheng H-L, Tomasi TB: A transforming growth factor β2 (TGF-β2)-like immunosuppressive factor in amniotic fluid and localisation of TGFβ2 mRNA in the pregnant uterus. J Exp Med 172: 1391–1401, 1990

    Google Scholar 

  33. Lang AK, Searle RF: The immunomodulatory activity of human amniotic fluid can be correlated with transforming growth factor-beta 1 (TGF-beta 1) and beta 2 activity. Clin Exp Immunol 97: 158–163, 1994

    Google Scholar 

  34. Cuckle H: Biochemical screening for Down syndrome. Eur J Obstet Gynecol Reprod Biol 92: 97–101, 2000

    Google Scholar 

  35. Hseih C, Wuu J, Trichopoulos D, Adami HO, Ekbom A: Gender of offspring and maternal breast cancer risk. Int J Cancer 81: 335–338, 1999

    Google Scholar 

  36. Sell S, Warren B (eds): Human Cancer Markers, Humana Press, Clifton, 1982

    Google Scholar 

  37. Blobe GC, Schiemann WP, Lodish HF: Role of transforming growth factor β in human disease. New Engl J Med 342:1350–1358, 2000

    Google Scholar 

  38. Bodmer S, Podlisny MB, Selkoe DJ, Heid I, Fontana A: Transforming growth factor-beta bound to soluble derivatives of the beta amyloid precursor protein of Alzheimer's disease. Biochem Biophys Res Comm 171: 890–897, 1990

    Google Scholar 

  39. Larner AJ: Physiological and pathological interrelationships of amyloid beta peptide and the amyloid precursor protein. Bioessays 17: 819–824, 1995

    Google Scholar 

  40. Amara FM, Junaid A, Clough RR, Liang B: TGF-beta(1), regulation of Alzheimer amyloid precursor protein mRNA expression in a normal human astrocyte cell line: mRNA stabilization. Brain Res Mol Brain Res 71: 42–49, 1999

    Google Scholar 

  41. Binkert C, Demetriou M, Sukhu B, Szweras M, Tenenbaum HC, Dennis JW: Regulation of osteogenesis by fetuin. J Biol Chem 274: 28514–28520, 1999

    Google Scholar 

  42. Jullien P, Berg T-M, Lawrence DA: Acidic cellular environments: Activation of latent TGF-β and sensitization of cellular responses to TGF-β and EGF. Int J Cancer 43: 886–891, 1989

    Google Scholar 

  43. Silver IA, Murrills RJ, Etherington DJ: Microelectode studies of the acid microenvironment beneath adherent macrophages and osteoclasts. Exp Cell Res 175: 266–276, 1988

    Google Scholar 

  44. Blair HC: How the osteoclast degrades bone. Bioessays 20: 837–846, 1998

    Google Scholar 

  45. Montcourrier P, Silver I, Farnoud R, Bird I, Rochefort H: Breast cancer cells have a high capacity to acidify extracellular milieu by a dual mechanism. Clin Exp Metastasis 15: 382–392, 1997

    Google Scholar 

  46. Antonelli-Orlidge A, Saunders KB, Smith SR, D'Amore PA: An activated form of transforming growth factor β is produced by cocultures of endothelial cells and pericytes. Proc Natl Acad Sci USA 86: 4544–4548, 1989

    Google Scholar 

  47. Sato Y, Rifkin DB: Inhibition of endothelial cell movement by pericytes and smooth muscle cells: activation of a latent transforming growth factor-β1-like molecule by plasmin during co-culture. J Cell Biol 109: 309–315, 1989

    Google Scholar 

  48. Sato Y, Tsuboi R, Lyons R, Moses HL, Rifkin DB: Characterization of the activation of latent TGF-β by co-cultures of endothelial cells and pericytes or smooth muscle cells: A self-regulating system. J Cell Biol 111: 757–763, 1990

    Google Scholar 

  49. Lyons RM, Keski-Oja J, Moses HL: Proteolytic activation of latent transforming growth factor-β from fibroblast-conditioned medium. J Cell Biol 106: 1659–1665, 1988

    Google Scholar 

  50. Yu Q, Stamenkovic I: Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev 14: 163–176, 2000

    Google Scholar 

  51. Abe M, Oda N, Sato Y: Cell-associated activation of latent transforming growth factor-beta by calpain. J Cell Physiol 174: 186–193, 1998

    Google Scholar 

  52. Lyons RM, Gentry LE, Purchio AF, Moses HL: Mechanism of activation of latent transforming growth factor beta 1 by plasmin. J Cell Biol 110: 1361–1367, 1990

    Google Scholar 

  53. Dennis P, Rifkin D: Cellular activation of latent transforming growth factor-β requires binding to the cation-independent mannose-6-phosphate/ insulin-like growth factor type II receptor. Proc Natl Acad Sci USA 88: 580–584, 1991

    Google Scholar 

  54. Godar S, Horejsi V, Weidle UH, Binder BR, Hansmann C, Stockinger H: M6P/IGFII-receptor complexes urokinase receptor and plasminogen for activation of transforming growth factor-beta1. Eur J Immunol 29: 1004–1013, 1999

    Google Scholar 

  55. Matrat M, Lardot C, Huaux F, Broeckaert F, Lison D: Role of urokinase in the activation of macrophage-associated TGF-beta in silicainduced lung fibrosis. J Toxicol Environ Health 55: 359–371, 1998

    Google Scholar 

  56. Flaumenhaft R, Abe M, Sato Y, Miyazono K, Harpel JG, Heldin C-H, Rifkin DB: Role of the latent TGF-β binding protein in the activation of latent TGF-β by co-cultures of endothelial and smooth muscle cells. J Cell Biol 120: 995–1002, 1993

    Google Scholar 

  57. Taipale J, Miyazono K, Heldin C-H, Keski-Oja J: Latent transforming growth factor-β1 associates to fibroblast extracellular matrix via latent TGF-β binding protein. J Cell Biol 124: 171–181, 1994

    Google Scholar 

  58. Verderio E, Gaudry C, Gross S, Smith C, Downes S, Griffin M: Regulation of cell surface tissue transglutaminase: Effects on matrix storage of latent transforming growth factor-beta binding protein-1. J Histochem Cytochem 47: 1417–1432, 1999

    Google Scholar 

  59. Nunes I, Gleizes PE, Metz CN, Rifkin DB: Latent transforming growth factor-β binding protein domains involved in activation and transglutaminase-dependent cross-linking of latent transforming growth factor-β. J Cell Biol 136: 1151–1163, 1997

    Google Scholar 

  60. Kojima S, Nara K, Rifkin DB: Requirement for transglutaminase in the activation of latent transforming growth factor-β in bovine endothelial cells. J Cell Biol 121: 439–448, 1993

    Google Scholar 

  61. Kojima S, Rifkin DB: Mechanism of retinoid-induced activation of latent transforming growth factor-β in bovine endothelial cells. J Cell Physiol 155: 323–332, 1993

    Google Scholar 

  62. Bonewald LF, Oreffo RO, Lee CH, Park-Snyder S, Twardzik D, Mundy GR: Effects of retinol on activation of latent transforming growth factor-beta by isolated osteoclasts. Endocrinology 138: 657–666, 1997

    Google Scholar 

  63. Montemurro P, Barbuti G, Conese M, Gabriele S, Petio M, Colucci M, Semeraro N: Retinoic acid stimulates plasminogen activator inhibitor 2 production by blood mononuclear cells and inhibits urokinase-induced extracellular proteolysis. Br J Hematol 107: 294–299, 1999

    Google Scholar 

  64. Carmeliet P, Schoonjans L, Kieckens L, Ream B, Degen J, Bronson R, De Vos R, van den Oord JJ, Collen D, Mulligan RC: Physiological consequences of loss of plasminogen activator gene function in mice. Nature 368: 419–424, 1994

    Google Scholar 

  65. Bugge TH, Suh TT, Flick MJ, Daugherty CC, Romer J, Solberg H, Ellis V, Dano K, Degen JL: The receptor for urokinase-type plasminogen activator is not essential for mouse development or fertility. J Biol Chem 270: 16886–16894, 1995

    Google Scholar 

  66. Schull MM, Ormsby I, Kier A, Pawlowski S, Diebold R, Yin M, Allen R, Sidman C, Proetzel G, Calvin D, Annunziata N, Doetschman T: Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease. Nature 359: 693–699, 1992

    Google Scholar 

  67. Schultz-Cherry S, Murphy-Ullrich JE: Thrombospondin causes activation of latent Transforming Growth Factor-β in bovine endothelial cells. J Cell Biol 122: 923–932, 1993

    Google Scholar 

  68. Crawford SE, Stellmach V, Murphy-Ullrich JE, Ribeiro SMF, Lawler J, Hynes RO, Boivin GP, Bouck N: Thrombospondin-1 is a major activator of TGF-β1 in vivo. Cell 93: 1159–1170, 1998

    Google Scholar 

  69. Bornstein P: Diversity of function is inherent in matricellular proteins: An appraisal of thrombospondin-1. J Cell Biol 130: 503–503, 1995

    Google Scholar 

  70. Tolsma SS, Volpert OV, Good DJ, Frazier WA, Polverini PJ, Bouck N: Peptides derived from two separate domains of the matrix protein thrombospondin-1 have anti-angiogenic activity. J Cell Biol 122: 497–511, 1993

    Google Scholar 

  71. Souchelnitskiy S, Chambaz EM, Feige JJ: Thrombospondins selectively activate one of the two latent forms of transforming growth factor-β present in adrenocortical cell-conditioned medium. Endocrinology 136: 5118–5126, 1995

    Google Scholar 

  72. Yelualaeshet T, O'Connor R, Green-Johnson J, Mai S, Silverstein R, Murphy-Ullrich JE, Khalil N: Activation of rat alveolar macrophagederived latent transforming growth factor beta-1 by plasmin requires interaction with thrombospondin-1 and its cell surface receptor, CD36. Am J Pathol 155: 841–851, 1999

    Google Scholar 

  73. Bailly S, Brand C, Chambaz EM, Feige JJ: Analysis of small latent transforming growth factor-beta complex formation and dissociation by surface plasmon resonance. Absence of direct interaction with thrombospondins. J Biol Chem 272: 16329–16334, 1997

    Google Scholar 

  74. Grainger DJ, Frow EK: Thrombospondin 1 does not activate transforming growth factor beta 1 in a chemically defined system or in smoothmuscle-cell cultures. Biochem J 350: 291–298, 2000

    Google Scholar 

  75. Abdelouahed M, Ludlow A, Brunner G, Lawler J: Activation of platelet transforming growth factor-beta 1 in the absence of thrombospondin-1. J Biol Chem 275: 17933–17936, 2000

    Google Scholar 

  76. Stach RM, Rowley DA: A first or dominant immunization. II. Induced immunoglobulin carries transforming growth factor beta and suppresses cytolytic T cell responses to unrelated alloantigens. J Exp Med 178: 841–852, 1993

    Google Scholar 

  77. Caver TE, O'sullivan FX, Gold LI, Gresham HD: Intracellular demonstration of active TGF-β1 in B cells and plasma cells of autoimmune mice. J Clin Invest 98: 2496–2506, 1996

    Google Scholar 

  78. Rowley DA, Stach RM: B lymphocytes secreting IgG linked to latent transforming growth factor-beta prevent primary cytolytic T lymphocyte responses. Int Immunol 10: 355–363, 1998

    Google Scholar 

  79. Munger JS, Huang X, Kawakatsu H, Griffiths MJD, Dalton SL, Wu J, Pittet J-F, Kaminski N, Garat C, Matthay MA, Rifkin DB, Sheppard D: The integrin avb6 binds and activates latent TGF-β1: A mechanism for regulating pulmonary inflammation and fibrosis. Cell 96: 319–328, 1999

    Google Scholar 

  80. Schwartz MA, Shattil SJ: Signaling networks linking integrins and rho family GTPases. Trends Biochem Sci 25: 388–391, 2000

    Google Scholar 

  81. Barcellos-Hoff MH: Radiation-induced transforming growth factor β and subsequent extracellular matrix reorganization in mammary gland. Cancer Res 53:3880–3886, 1993

    Google Scholar 

  82. O'Malley Y, Zhao W, Barcellos-Hoff MH, Robbins MEC: Radiationinduced alterations in rat mesangial cell Tgfb1 and Tgfb3 gene expression are not associated with altered secretion of active TGF-β isoforms. Radiat Res 152: 622–628, 1999

    Google Scholar 

  83. Koli K, Keski-Oja J: Vitamin D3 regulation of transforming growth factor-beta system in epithelial and fibroblastic cells - relationships to plasminogen activation. J Investig Dermatol Symp Proc 1: 33–38, 1996

    Google Scholar 

  84. Oursler MJ, Riggs BL, Spelsberg TC: Glucocorticoid-induced activation of latent transforming growth factor-beta by normal human osteoblast-like cells. Endocrinology 133: 2187–2196, 1993

    Google Scholar 

  85. Grainger DJ, Kemp PR, Metcalfe JC, Liu AC, Lawn RM, Williams NR, Grace AA, Schofield PM, Chauhan A: The serum concentration of active transforming growth factor-beta is severely depressed in advanced atherosclerosis. Nat Med 1: 74–79, 1995

    Google Scholar 

  86. Studer RK, Georgescu HI, Miller LA, Evans CH: Inhibition of transforming growth factor beta production by nitric oxide-treated chondrocytes: implications for matrix synthesis. Arthritis Rheum 42: 248–257, 1999

    Google Scholar 

  87. Zaher H, Fernandez-Salguero PM, Letterio J, Sheikh MS, Fornace AJ Jr, Roberts AB, Gonzalez FJ: The involvement of aryl hydrocarbon receptor in the activation of transforming growth factor-beta and apoptosis. Mol Pharmacol 54: 313–321, 1998

    Google Scholar 

  88. Schindler H, Diefenbach A, Rollinghoff M, Bogdan C: IFN-gamma inhibits the production of latent transforming growth factor-beta1 by mouse inflammatory macrophages. Eur J Immunol 28: 1181–1188, 1998

    Google Scholar 

  89. Wakefield LM, Winokur TS, Hollands RS, Christopherson K, Levinson AD, Sporn MB: Recombinant latent transforming growth factor-β1 has a longer half-life than active transforming growth factor-β1, and a different tissue distribution. J Clin Invest 86: 1976–1984, 1990

    Google Scholar 

  90. Nagy JA, Brown LF, Senger DR, Lanir N, Van de Water L, Dvorak AM, Dvorak HF: Pathogenesis of tumor stroma generation: A critical role for leaky blood vessels and fibrin deposition. Biochim Biophys Acta 948: 305–326, 1988

    Google Scholar 

  91. Fischer B, Muller B, Fischer KG, Baur N, Kreutz W: Acidic pH inhibits non-MHC-restricted killer cell functions. Clin Immunol 96: 252–263, 2000

    Google Scholar 

  92. Zuber P, Kuppner MC, De Tribolet N: Transforming growth factor-β2 downregulates HLA-DR antigen expression on human malignant glioma cells. Eur J Immunol 18: 1623–1626, 1988

    Google Scholar 

  93. Erbas H, Lennard TW, Lai LC: Latent forms of transforming growth factor-beta 2 in breast cyst fluid. Anticancer Res 19: 3077–3082, 1999

    Google Scholar 

  94. Martin M, Delanian S, Sivan V, Vozenin-Brotons MC, Reisdorf P, Lawrence DA, Lefaix JL: Fibrose superficielle radio-induite et TGF-β1. Cancer Radiotherapie 4: 369–384, 2000

    Google Scholar 

  95. Datta PK, Moulder JE, Fish BL, Cohen EP, Lianos EA: TGF-beta 1 production in radiation nephropathy: Role of angiotensin II. Int J Radiat Biol 75: 473–479, 1999

    Google Scholar 

  96. Hellmich B, Schellner M, Schatz H, Pfeiffer A: Activation of transforming growth factor-beta 1 in diabetic kidney disease. Metabolism 49: 353–359, 2000

    Google Scholar 

  97. Yang L, Qui CX, Ludlow A, Ferguson MW, Brunner G: Active transforming growth factor-beta in wound repair: Determination using a new assay. Am J Pathol 154, 105–111, 1999

    Google Scholar 

  98. Spranger J, Meyer-Schwickerath R, Klein M, Schatz H, Pfeiffer A: Deficient activation and different expression of transforming growth factor-beta isoforms in active proliferative diabetic retinopathy and neovascular eye disease. Exp Clin Endocrinol Diabetes 107: 21–28, 1999

    Google Scholar 

  99. Grainger DJ, Heathcote K, Chiano M, Snieder H, Kemp PR, Metcalfe JC, Carter ND, Spector TD: Genetic control of the circulating concentration of transforming growth factor type beta 1. Hum Mol Genet 8: 93–97, 1999

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Lawrence.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lawrence, D.A. Latent-TGF-β: An overview. Mol Cell Biochem 219, 163–170 (2001). https://doi.org/10.1023/A:1010819716023

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010819716023

Navigation