Skip to main content
Log in

Application of a Soil Water Hysteresis Model to Simple Water Retention Curves

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The Parlange hysteresis model is reformulated as a pair of recurrence relations to provide relationships between wetting and drying phases to any order. The model is applied to the classical van Genuchten model for soil water retention used as the main wetting curve. The nonphysical behaviour of these retention curves is related to the existence of a point of inflection in the van Genuchten model when it is used for the wetting boundary. Where the van Genuchten form is used as the main drying curve, the Parlange hysteresis model provides an ordinary differential equation describing the main wetting curve. A number of simple analytical solutions, relating to particular values of the parameters of the van Genuchten model, then provide forms for the main wetting curve. In general, a numerical integration is required to generate the main wetting curve, for general values of the parameters of the van Genuchten model. The recurrence relations for the hysteresis cycling are still applicable, even when the main wetting curve is only known numerically. The new main wetting curves do not have inflection points and there is no nonphysical behaviour. The model is then applied to the experimental data of Viaene et al. (1994)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brooks, R. H. and Corey, A. J.: 1964, Hydraulic Properties of Porous Media, Hydrology Paper 3, Colorado State University, Fort Collins, CO, pp. 1-27.

    Google Scholar 

  • DiCarlo, D. A., Bauters, T.W. J., Darnault, C. J. G., Steenhuis, T. S. and Parlange, J.-Y.: 1999, Lateral expansion of preferential flow paths in sands, Water Resour. Res. 35, 427-434.

    Google Scholar 

  • Farrell, D. A. and Larson, W. E.: 1972, Modelling of the pore structure of porous media, Water Resour. Res. 8, 148-153.

    Google Scholar 

  • Fuentes, C., Haverkamp, R. and Parlange, J.-Y.: 1992, Parameter constraints on soil water characteristics, in: M. Th., van Genuchten, F. J., Leij and L. J., Lund (eds), Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils, University of California, Riverside, pp. 161-168.

    Google Scholar 

  • Hogarth, W. L., Hopmans, J., Parlange, J.-Y., and Haverkamp, R.: 1988, Application of a simple soil-water hysteresis model, J. Hydrol. 98, 21-29.

    Google Scholar 

  • Jaynes, D. B.: 1992, Estimating hysteresis in the soil-water retention function, in: M. Th., van Genuchten, F. J., Leij and L. J., Lund (eds), Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils, University of California, Riverside, pp. 219-232.

    Google Scholar 

  • King, L. G.: 1965, Description of soil characteristics for partially saturated flow, Soil Sci. Soc. Am. Proc. 29, 359-362.

    Google Scholar 

  • Liu, Y., Parlange, J.-Y., Steenhuis, T. S. and Haverkamp, R.: 1995, A soil-water hysteresis model for fingered flow data, Water Resour. Res. 31, 2263-2266.

    Google Scholar 

  • Parlange, J.-Y.: 1976, Capillary hysteresis and the relationship between drying and wetting curves, Water Resour. Res. 12, 224-228.

    Google Scholar 

  • Prudnikov, A. P., Brychkov, Yu. A. and Marichev, O. I.: 1986, Integrals and Series, Gordon and Breach, London.

  • Ritsema, C. J., Dekker, L. W., Nieber, J. L. and Steenhuis, T. S.: 1998, Modeling and field evidence of finger formation and finger recurrence in a water repellent sandy soil, Water Resour. Res. 34, 555-567.

    Google Scholar 

  • Si, B. C. and Kachanoski, R. G.: 2000, Unified solution for infiltration and drainage with hysteresis; theory and field test, Soil Sci. Soc. Am. J. 64, 30-35.

    Google Scholar 

  • van Genuchten, M. Th.: 1980, A closed form equation for predicting the hydraulic conductivities of unsaturated soils, Soil Sci. Soc. Am. J. 44, 892-898.

    Google Scholar 

  • Vereecken, H.: 1992, Derivation and validation of pedotransfer functions for soil hydraulic properties, in: M. Th., van Genuchten, F. J., Leij and L. J., Lund (eds), Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils, University of California, Riverside, pp. 473-488.

    Google Scholar 

  • Viaene, P., Vereecken, H., Diels, J. and Feyen, J.: 1994, A statistical analysis of six hysteresis models for the moisture retention characteristic, Soil Sci. 157, 345-355.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braddock, R., Parlange, JY. & Lee, H. Application of a Soil Water Hysteresis Model to Simple Water Retention Curves. Transport in Porous Media 44, 407–420 (2001). https://doi.org/10.1023/A:1010792008870

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010792008870

Navigation