Skip to main content
Log in

Artificial Life Simulation of Living Alga Cells and Its Sorption Mechanisms

  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Resistance mechanisms of organisms against toxic metals are based on a few different mechanisms provided by algae cells. These mechanisms can be localized on the cell wall, on the cell wall and cytoplasm membrane, and intracellular localized mechanisms. Due to these mechanisms, algae populations could be used for sorption of arsenic from contaminated waters. This process takes a long time and it's not very variable. With artificial life simulation based on multi-agent simulation system we are preparing a simulation that could at least partially substitute the real experiments with real cells. Artificial life simulation of alga Chlorella kessleri is based on real biological parameters and together with partial implementation of other mathematical models of algae population growth it will be used for simulating the process of absorbing heavy metals from contaminated water. Model implementation is done in Swarm—multi agent object based simulation system and it's libraries. Simulation is still in testing and debugging phase and it is not yet available for public.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Wood, J. M., and Wang, H-K., Microbial Resistance to Heavy Metals. In Environmental Inorganic Chemistry (Proceedings), VCH Publishers, Inc. Deerfield Beach, Florida, pp. 487–512, 1985.

    Google Scholar 

  2. Veglio, F., and Beolchini, F., Removal of metals by biosorption. Hydrometallurgy 44:301–316, 1997.

    Google Scholar 

  3. Holan, Z. R., Volesky, B., and Prasetyo, I., Biosorption of cadmium by biomass of marine algae. Biotechnol. Bioeng. 41:819–825, 1993.

    Google Scholar 

  4. Silver, S., Bacterial transformations of and resistances to heavy metals. In Environmental Inorganic Chemistry (Proceedings), VCH Publishers, Inc. Deerfield Beach, Florida, pp. 513–537, 1985.

    Google Scholar 

  5. Cervantes, C., Bacterial resistance to arsenic compounds (Resistencia bacteriana a compuestos de arsenico). Rev. Latinoam. Microbiol. 34(4):387–395, 1995.

    Google Scholar 

  6. Bobrowicz, P., Wysocki, R., Owsianik, G., Goffeau, A., and Ulaszewski, S., Isolation of three contiguous genes, ACR1, ACR2 and ACR3, involved in resistance to arsenic compounds in the yeast Sacchromyces cerevisiae. Yeast 13(9):819–828, 1997.

    Google Scholar 

  7. Rosen, B. P., Bhattacharjee, H., and Shi, W., Mechanisms of metalloregulation of an aniontranslocating ATP-ase. J. Bioenerg. Biomembr. 27(1):85–91, 1995.

    Google Scholar 

  8. Nies, D. H., and Silver, S., Ion efflux systems involved in bacterial metal resistances. J. Ind. Microbiol. 14(2):186–199, 1995.

    Google Scholar 

  9. Woolson, E. A., Emissions, cycling and effects of arsenic in soil ecosystems. In Biological and Environmental Effects of Arsenic, Elsevier Science Publishers B.V., Amsterdam. 1983, p. 76.

    Google Scholar 

  10. Cullen, R.W., and Reiner, K. J., Arsenic speciation in the environment. Chem. Rev. 89:713–764, 1989.

    Google Scholar 

  11. Bencko, V., Cikrt, M., and Lener, J.,Toxicke kovy v zivotnim a pracovnim prostredi cloveka.GRADA, AVICENUM Praha 77–94, 1995.

    Google Scholar 

  12. Goessler, W., et al., Chlorella sp. and arsenic compounds: An attempt to prepare an algal reference material for arsenic compounds. Appl. Organometallic Chem. 11(1):57–66, 1997.

    Google Scholar 

  13. Hassett, J. M., Jennett, J. C., and Smith, J. E., Control of heavy metals in the environment using algae. In Management and Control of Heavy Metal Environments, Int. Conf., CEP Consultants Ltd., Edinburgh, Scotland, p. 210, 1979.

    Google Scholar 

  14. Kuyucak, N., and Volesky, B.,Amethod of metal removal.Water Pollut. Res. J. Can.CAWPRC23:425, 1989.

    Google Scholar 

  15. Darnall, D. W., and Hyde, L. D., Removal of heavy metal ions from groundwaters using an algal biomass. In Proceedings of the 2nd National Conference, November 27–29, Washington, USA, pp. 41–45, 1989.

  16. Hindak, F., Studies on the chlorococcal algae (Chlorophyceae) II. Biologicke prace 6:XXVI, Veda, Bratislava, 1980.

    Google Scholar 

  17. Altmann, A., Zpevak, J., and Zpevakova, H., Morska fauna a flora, Albatros, Praha, 1984.

    Google Scholar 

  18. Peciar, V., Cervenka, M., and Hindak, F., Zaklady systemu a evolucie vytrusnych rastlin. SPN Bratislava, 1984.

  19. Urban, Z., and Kalina, T., System a evoluce nizsich rostlin. SPN Praha 151–153, 1980.

  20. Adami, Ch., Introduction to Artificial Life, Springer-Verlag, New York, Inc., 1998.

    Google Scholar 

  21. Hindak, F., Studies on the chlorococcal algae (Chlorophyceae). III,VEDA, Bratislava, 177–181, 1984.

  22. Hindak, F., Studies on the chlorococcal algae (Chlorophyceae). II, VEDA, Bratislava, 59–65, 1980.

  23. Hindak, F., Sladkovodne riasy. SPN, Bratislava, pp. 11–57, 534, 1978.

    Google Scholar 

  24. Langton, Ch., Minar, N., Burkhart, R., and Askenazi, M., The Swarm simulation system, http://www.santafe.edu/projects/swarm, Santa Fe Institute, Santa Fe, 1995.

    Google Scholar 

  25. Di Toro, D. M., O'Connor, D. J., and Thomann, R. V., A dynamic model of the phytoplankton population in the Sacramento-San Joaquin Delta,Nonequilibrium systems in natural water chemistry. Adv. Chem., Ser. 106, J.D. Hem (ed.), pp. 131–180.

  26. Kreft, J. U., Booth, G., and Wimpenny, J. W. T., BacSim, a simulator for individual-based modeling of bacterial colony growth, Microbiology 144:3275–3287, http://www.socgenmicrobiol.org.uk/MIC/144/3275/1443275H.HTM

  27. Zvirinsky, P., MAG: Metabolising Agents simulation. Project, Report, Department of Computer and Information Science, Lade, NTNU Trondheim, Norway, 1999, <http://www.ifi.ntnu.no/> ªzvirinsk/projects.htm

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Polak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Csonto, J., Kadukova, J. & Polak, M. Artificial Life Simulation of Living Alga Cells and Its Sorption Mechanisms. Journal of Medical Systems 25, 221–231 (2001). https://doi.org/10.1023/A:1010785000977

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010785000977

Navigation