Skip to main content
Log in

Lower Bounds for the Nodal Length of Eigenfunctions of the Laplacian

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

We prove lower bounds for the length of the zero set of aneigenfunction of the Laplace operator on a Riemann surface; inparticular, in non-negative curvature, or when the associated eigenvalueis large, we give a lower bound which involves only the square root ofthe eigenvalue and the area of the manifold (modulo a numericalconstant, this lower bound is sharp).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brüning, J.: Ñber Knoten Eigenfunktionen des Laplace-Beltrami Operators, Math. Z. 158 (1978), 15-21.

    Google Scholar 

  2. Brüning, J. and Gromes, D.: Ñber die Länge der Knotenlinien schwingender Membranen, Math. Z. 124 (1972), 79-82.

    Google Scholar 

  3. Cheng, S. Y.: Eigenfunctions and nodal sets, Comm. Math. Helv. 51 (1976), 43-55.

    Google Scholar 

  4. Cheng, S. Y.: Eigenvalue comparison theorems and its geometric applications, Math. Z. 143 (1975), 289-297.

    Google Scholar 

  5. Dong, R.-T: Nodal sets of eigenfunctions on Riemann surfaces, J. Differential Geom. 36 (1992), 493-506.

    Google Scholar 

  6. Donnelly, H. and Fefferman, C.: Nodal sets of eigenfunctions on Riemannian manifolds, Invent. Math. 93 (1988), 161-183.

    Google Scholar 

  7. Donnelly, H. and Fefferman, C.: Nodal sets for eigenfunctions of the Laplacian on surfaces, J. Amer. Math. Soc. 3(2) (1990), 333-353.

    Google Scholar 

  8. Fiala, F.: Les problèmes des isopérimetres sur les surfaces ouvertes à courbure positive, Comm. Math. Helv. 13 (1941), 293-346.

    Google Scholar 

  9. Gage, M.: Upper bounds for the first eigenvalue of the Laplace-Beltrami operator, Indiana Univ. Math. J. 29(6) (1980), 897-912.

    Google Scholar 

  10. Gallot, S.: Inégalités isopérimétriques et analitiques sur les variétés riemanniennes, Astérisque 163/164 (1988), 31-91.

    Google Scholar 

  11. Hartman, P.: Geodesic parallel coordinates in the large, Amer. J. Math. 86 (1964), 705-727.

    Google Scholar 

  12. Heintze, E. and Karcher, H.: A general comparison theorem with applications to volume estimates for submanifolds, Ann. Sci. Ecole Norm. Sup. 11 (1978), 451-470.

    Google Scholar 

  13. Hersch, J.: The Method of Interior Parallels Applied to Vibrating Membranes, Stud. Math. Anal. Related Topics, University of California Press, Stanford, CA, 1962.

    Google Scholar 

  14. Li, P. and Yau, S. T.: Estimates of eigenvalues of a compact Riemannian manifold, Proc. Symp. Pure Math. 36 (1980), 205-239.

    Google Scholar 

  15. Osserman, R.: A note on Hayman's theorem on the bass note of a drum, Comm. Math. Helv. 52 (1977), 545-555.

    Google Scholar 

  16. Polya, G.: Two more inequalities between physical and geometric quantities, J. Indian Math. Soc. 24 (1960), 413-419.

    Google Scholar 

  17. Protter, M. H. and Weinberger, H. F.: Maximum Principles in Differential Equations, Partial Differential Equations Series, Prentice-Hall, Englewood Cliffs, NJ, 1967.

    Google Scholar 

  18. Schoen, R., Wolpert, S. and Yau, S. T.: Geometric bounds on the low eigenvalues of a compact surface, Proc. Symp. Pure Math. 36 (1980), 279-285.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savo, A. Lower Bounds for the Nodal Length of Eigenfunctions of the Laplacian. Annals of Global Analysis and Geometry 19, 133–151 (2001). https://doi.org/10.1023/A:1010774905973

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010774905973

Navigation