Skip to main content
Log in

Bell Numbers, Log-Concavity, and Log-Convexity

  • Published:
Acta Applicandae Mathematica Aims and scope Submit manuscript

Abstract

Let {b k (n)} n=0 be the Bell numbers of order k. It is proved that the sequence {b k (n)/n!} n=0 is log-concave and the sequence {b k (n)} n=0 is log-convex, or equivalently, the following inequalities hold for all n⩾0,

$$1 \leqslant \frac{{b_k (n + 2)b_k (n)}}{{b_k (n + 1)^2 }} \leqslant \frac{{n + 2}}{{n + 1}}$$

. Let {α(n)} n=0 be a sequence of positive numbers with α(0)=1. We show that if {α(n)} n=0 is log-convex, then α(n)α(m)⩽α(n+m), ∀n,m⩾0. On the other hand, if {α(n)/n!} n=0 is log-concave, then

$$\alpha (n + m) \leqslant \left( {\begin{array}{*{20}c} {n + m} \\ n \\ \end{array} } \right)\alpha (n)\alpha (m),{\text{ }}\forall n,m \geqslant 0$$

. In particular, we have the following inequalities for the Bell numbers

$$b_k (n)b_k (m) \leqslant b_k (n + m) \leqslant \left( {\begin{array}{*{20}c} {n + m} \\ n \\ \end{array} } \right)b_k (n)b_k (m),{\text{ }}\forall n,m \geqslant 0$$

. Then we apply these results to characterization theorems for CKS-space in white noise distribution theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asai, N., Kubo, I. and Kuo, H.-H.: General characterization theorems and intrinsic topologies in white noise analysis, Preprint, 1998.

  2. Bender, E. A. and Canfield, E. R.: Log-concavity and related properties of the cycle index polynomials, J. Combin. Theory A 74(1996), 57–70.

    Google Scholar 

  3. Canfield, E. R.: Engel's inequality for Bell numbers, J. Combin. Theory A 72(1995), 184–187.

    Google Scholar 

  4. Cochran, W. G., Kuo, H.-H. and Sengupta, A.: A new class of white noise generalized functions, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 1(1998), 43–67.

    Google Scholar 

  5. Engel, K.: On the average rank of an element in a filter of the partition lattice, J. Combin. Theory A 65(1994), 67–78.

    Google Scholar 

  6. Kubo, I.: On characterization theorems for CKS-spaces in white noise analysis, Preprint, 1998.

  7. Kubo, I., Kuo, H.-H. and Sengupta, A.: White noise analysis on a new space of Hida distributions, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2(1999), 315–335.

    Google Scholar 

  8. Kuo, H.-H.: White Noise Distribution Theory, CRC Press, Boca Raton, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asai, N., Kubo, I. & Kuo, HH. Bell Numbers, Log-Concavity, and Log-Convexity. Acta Applicandae Mathematicae 63, 79–87 (2000). https://doi.org/10.1023/A:1010738827855

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010738827855

Navigation