Skip to main content
Log in

Identification of Photosystem I components from a glaucocystophyte, Cyanophora paradoxa: The PsaD protein has an N-terminal stretch homologous to higher plants

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Thylakoid membranes and Photosystem I (PS I) complexes were isolated from a glaucocystophyte, Cyanophora paradoxa, which is thought to have the most primitive ‘plastids’, and the proteins related to PS I were examined. The intrinsic light-harvesting chlorophyll protein complexes of PS I (LHC I) were not detected by an immunological method. The PS I complexes consisted of at least eight low-molecular-mass proteins in addition to PS I reaction center proteins. The N-terminal sequence of the PsaD protein has higher homology to that of Chlamydomonas reinhardtii and land plants, than to that of other algae or cyanobacteria. On the other hand, the PsaL sequence has the highest homology to those of cyanobacteria. Taking into account the other sequences of PS I components whose genes are encoded in the cyanelle genome, and the fact that LHC I is not detected, it is concluded that PS I of C. paradoxa has chimeric characteristics of both ‘green’ lineages and cyanobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bass R, Soen SY, Frank G, Zuber H and Rochaix J-D (1992) Characterization of Chlorophyll a/b proteins of Photosystem I form Chlamydomonas reinhardtii. J Biol Chem 267: 25714–25721

    Google Scholar 

  • Burnap RL and Trench RK (1989) The biogenesis of the cyanellae of Cyanophora paradoxa. I. Polypeptide composition of the cyanellae. Proc R Soc London B 238: 53–72

    Article  CAS  Google Scholar 

  • Douglas SE and Penny SL (1999) The plastid genome of the cryptophyte alga, Guillardia theta: Complete sequence and conserved synteny groups confirm its common ancestry with red algae. J Mol Evol 48: 236–244

    Article  PubMed  CAS  Google Scholar 

  • Durnford DG, Deane JA, Tan S, McFadden GI, Gantt E and Green BR (1999) A phylogenetic assessment of the eukaryotic light-harvesting antenna proteins, with implications for plastid evolution. J Mol Evol 48: 59–68

    Article  PubMed  CAS  Google Scholar 

  • Green BR and Durnford DG (1996) The Chlorophyll-carotenoid proteins of oxygenic photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 47: 685–714

    Article  PubMed  CAS  Google Scholar 

  • Golbeck JH (1992) Structure and function of Photosystem I. Ann Rev Plant Physiol Plant Mol Biol 43: 293–324

    Article  CAS  Google Scholar 

  • Hall WT and Claus G (1963) Ultrastructural studies on the blue-green algal symbiont in Cyanophora paradoxa Korschikoff. J Cell Biol 19: 551–563

    Article  PubMed  CAS  Google Scholar 

  • Hallick RB, Hong L, Drager RG, Favreau MR, Montfort AB, Orsat A, Spielmann A and Stutz E (1993) Complete sequence of the Euglena gracilis Chloroplast DNA. Nucleic Acids Res 21: 3537–3544

    PubMed  CAS  Google Scholar 

  • Hiratsuka J, Shimada H, Whittier R, Ishibashi T, Sakamoto M, Mori M, Kondo C, Honji Y, Sun C-R, Meng B-Y, Li Y-Q, Kanno A, Nishizawa Y, Hirai A, Shinozaki K and Sugiura M (1989) The complete sequence of the rice (Oryza sativa) chloroplast genome: Intermolecular recombination between ditinct tRNA genes account for a major plastid inversion during the evolution of cereals. Mol Gen Gen 217: 185–194

    CAS  Google Scholar 

  • Hiyama T (1996) Photosystem I: Structures and functions. In: Pessarakli M (ed) Handbook of Photosynthesis, pp 195–217, Marcel Dekker, New York

    Google Scholar 

  • Ichimura T (1971) Sexual cell division and conjugation-papilla formation in sexual reproduction of Chlosterium strigosum. In: Proc. 7th Internatl. Seaweed Symposium pp 208–214. University of Tokyo Press, Tokyo

    Google Scholar 

  • Ikeuchi M and Inoue Y (1988) A new Photosystem II reaction center component (4.8 kDa protein) encoded by chloroplast genome. FEBS Lett 241: 99–104

    Article  PubMed  CAS  Google Scholar 

  • Ikeuchi M, Sonoike K, Koike H, Pakrasi HB and Inoue Y (1992) A novel 3.5 kDa protein component of cyanobacterial Photosystem I complexes. Plant Cell Physiol 33: 1057–1063

    CAS  Google Scholar 

  • Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Sugiura M, Sasamoto S, Kimura T, Hosouchi T, Matsuno A, Muraki A, Nakazaki N, Naruo K, Okumura S, Shimpo S, Takeuchi C, Wada T, Watanabe A, Yamada M, Yasuda M and Tabata S (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. Strain PCC 6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3: 109–136

    Article  PubMed  CAS  Google Scholar 

  • Koike H, Ikeuchi M, Hiyama T and Inoue Y (1989) Identification of Photosystem I components from the cyanobacterium, Synechococcus vulcanus by N-terminal sequencing. FEBS Lett 253: 257–263

    Article  PubMed  CAS  Google Scholar 

  • Kowallik KV, Stoebe B, Schaffran I, Kroth-Pancic P and Freier U (1995) The complete genome of a chlorophyll a+c-containing alga, Odontella sinensis. Plant Mol Biol Reptr 13: 336–342

    CAS  Google Scholar 

  • Krauß N, Schubert W-D, Klukas O, Fromme P, Witt HT and Sänger W (1996) Photosystem I at 4 Å resolution represents the first structural model of a joint photosystem reaction centre and core antenna system. Nature Struct Biol 3: 965–973

    Article  PubMed  Google Scholar 

  • Löffelhardt W and Bohnert HJ (1994a) Molecular biology of cyanelles In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp 65–89. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Löffelhardt W and Bohnert HJ (1994b) Structure and function of cyanelle genome. Internatl Rev Cytol 151: 29–65

    Google Scholar 

  • Löffelhardt W, Bohnert HJ and Bryant DA (1997) The cyanelles of Cyanophora paradoxa. Critical Rev Plant Sci 16: 393–413

    Google Scholar 

  • Maier RM, Neckermann K, Igloi GL and Koessel H (1995) Complete sequence of the maize chloroplast genome: Gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. J Mol Biol 251: 614–628

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Bettina S, Goremykin V, Hansmann S, Hasegawa M and Kowallik KV (1998) Gene transfer to the nucleus and the evolution of chloroplasts. Nature 393: 162–165

    Article  PubMed  CAS  Google Scholar 

  • Mühlenhoff U, Haehnel W, Witt HT and Herrmann RG (1993) Genes encoding 11 subunits of Photosystem I from the thermophilic cyanobacterium Synechococcus sp. Gene 127: 71–78

    Article  PubMed  Google Scholar 

  • Naver H, Scott P, Anderson B, Møller BL and Scheller V (1995) Reconstitution of barley Photosystem I reveals that the N-terminus of the PS I-D subunit is essential for tight binding of PS I-C. Physiol Plant 95: 19–26

    Article  CAS  Google Scholar 

  • Nyhus K, Ikeuchi M, Inoue Y, Whitmarsh J and Pakrasi HB (1992) Purification and characterization of the Photosystem I complex from the filamentous cyanobacterium Anabaena variabilis ATCC 29413. J Biol Chem 25: 12489–12495

    Google Scholar 

  • Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S, Inokuchi H and Ozeki H (1986) Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha. Nature 322: 572–574

    Article  CAS  Google Scholar 

  • Paula De JC, Innes JB and Brudvig GW (1985) Electron transfer in Photosystem II at cryogenic temperatures. Biochemistry 24: 8114–8120

    Article  PubMed  Google Scholar 

  • Reith J and Munholland J (1995) Complete nucleotide sequence of the Porphyra purpurea chloroplast genome. Plant Mol Biol Reptr 13: 333–335

    CAS  Google Scholar 

  • Riehl E, Stirewalt VL, Gasparich GE and Bryant DA (1992) The psaC genes of Synechococcus sp. PCC7002 and Cyanophora paradoxa: Cloning and sequence analysis. Gene 112: 123–128

    Article  Google Scholar 

  • Shen JR (1999) Possible functional differences between dimer and monomer of Photosystem II complex. In: Garab G (ed) Photosynthesis: Mechanisms and Effects, Vol II, pp 941–944. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Shibata M, Kashino Y, Satoh K and Koike H (1999) Identification of protein components of photosystems of cyanelle-thylakoids from Cyanophora paradoxa. In: Garab G (ed) Photosynthesis: Mechanisms and Effects, Vol IV, pp 3107–3110. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Simada H and Sugiura M (1986) The complete nucleotide sequence of the tobacco chloroplast genome: Its gene organization and expression. EMBO J 5: 2043–2049

    PubMed  CAS  Google Scholar 

  • Stirewalt VL, Michalowski CB, Loeffelhardt W, Bohnert HJ and Bryant DA (1995) Nucleotide seuence of the cyanelle genome from Cyanophora paradoxa. Plant Mol Biol Reptr 13: 327–332

    Article  CAS  Google Scholar 

  • Tan S, Wolfe GR, Cunningham FX Jr and Gantt E (1995) Decrease of polypeptides in the PS I antenna complex with increasing growth irradiance in the red algaPorphyridium cruentum. Photosynth Res 45: 1–10

    Article  CAS  Google Scholar 

  • Tan S, Ducret A, Aebersold R and Gantt E (1997) Red algal LHC I genes have similarities with both Chl a/b-and a/c-binding proteins: A21 kDa polypeptide encoded by LhcaR2 is one of the six LHC I polypeptides. Photosynth Res 53: 129–140

    Article  CAS  Google Scholar 

  • Wakasugi T, Tsudsuki J, Ito S, Nakashima K, Tsudzuki T and Sugiura M (1994) Loss of all ndh genes as determined by sequencing the entire chloroplast genome of the black pine Pinus thunbergii. Proc Natl Acad Sci USA 91: 9794–9798

    Article  PubMed  CAS  Google Scholar 

  • Wakasugi T, Nagai T, Kapoor M, Sugita M, Ito M, Ito S, Tsudzuki J, Nakashima K, Tsudzuki T, Suzuki Y, Hamada A, Ohta T, Inamura A, Yoshinaga K and Sugiura M (1997) Complete nucleotide sequence of the chloroplast genome from the green alga Chlorella vulgaris: The existence of genes possibly involved in chloroplast division. Proc Natl Acad Sci USA 94: 5967–5972

    Article  PubMed  CAS  Google Scholar 

  • Westermann M, Neuschaefer-Rube O, Mörschel E and Wehrmeyer W (1999) Trimeric Photosystem I complexes exist in vivo in thylakoid membranes of the Synechocystis strain B9201 and differ in absorption characteristics from monomeric Photosystem I complexes. J Plant Physiol 155: 24–33

    CAS  Google Scholar 

  • Wolfe GR, Cunningham FX, Dunhord D, Green BR and Gantt E (1994) Evidence for a common origin of chloroplasts with light-harvesting complexes of different pigmentation. Nature 367: 566–568

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Koike.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koike, H., Shibata, M., Yasutomi, K. et al. Identification of Photosystem I components from a glaucocystophyte, Cyanophora paradoxa: The PsaD protein has an N-terminal stretch homologous to higher plants. Photosynthesis Research 65, 207–217 (2000). https://doi.org/10.1023/A:1010734912776

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010734912776

Navigation