Advertisement

International Journal of Primatology

, Volume 22, Issue 3, pp 329–346 | Cite as

Self-induced Increase of Gut Motility and the Control of Parasitic Infections in Wild Chimpanzees

  • M. A. HuffmanEmail author
  • J. M. Caton
Article

Abstract

When physiological adaptation is insufficient, hosts have developed behavioral responses to avoid or limit contact with parasites. One such behavior, leaf-swallowing, occurs widely among the African great apes. This behavior involves the slow and deliberate swallowing without chewing of whole bristly leaves. Folded one at a time between tongue and palate, the leaves pass through the gastro-intestinal (GI) tract visibly unchanged. Independent studies in two populations of chimpanzees (Pan troglodytes schweinfurthii) showed significant correlations between the swallowing of whole leaves and the expulsion of the nodule worm Oesophagostomum stephanostomum and a species of tapeworm (Bertiella studeri). We integrate behavioral, parasitological and physiological observations pertaining to leaf-swallowing to elucidate the behavioral mechanism responsible for the expulsion and control of nodule worm infections by the ape host. Physical irritation produced by bristly leaves swallowed on an empty stomach, increases motility and secretion resulting in diarrhea which rapidly moves leaves through the GI tract. In the proximal hindgut, the site of third-stage larvae (L3) cyst formation and adult worm attachment, motility, secretion and the scouring effect of rough leaves is enhanced by haustral contractions and peristalsis-antiperistalsis. Frequently, at the peak of reinfection, a proportion of nonencysted L3 is also predictably vulnerable. These factors should result in the disruption of the life cycle of Oesophagostomum spp. Repeated flushing during peak periods of reinfection is probably responsible for long-run reduction of worm burdens at certain times of the year. Accordingly, leaf-swallowing can be viewed as a deliberate adaptive behavioral strategy with physiological consequences for the host. The expulsion of worms based on the activation of basic physiological responses in the host is a novel hitherto undescribed form of parasitic control.

chimpanzee parasite control physical mechanism self-medication hostparasite relationship 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Anderson, R. C. (1992). Nematode Parasites of Vertebrates. Their Development and Transmission. C.A.B. International, Walingford.Google Scholar
  2. Anderson, R. M. & May, R. M. (1982). Population Biology of Infectious Diseases. Springer-Verlag, Berlin.Google Scholar
  3. Armour, J. & Duncan, M. (1987). Arrested larval development in cattle nematodes.Parasitology Today 3: 171-176.Google Scholar
  4. Baker, M. (1996). Fur rubbing: Use of medicinal plants by capuchin monkeys (Cebus capucinus). Am. J. Primatol 38: 263-270.Google Scholar
  5. Beaver, P. C., Jung, R. C. & Cupp, E. W. (1984). Clinical Parasitology, 9th Ed., Lea & Febiger, Philadelphia PA.Google Scholar
  6. Brack, M. (1987). Agents Transmissible from Simians to Man. Springer-Verlag, Berlin.Google Scholar
  7. Caton, J. M. (1997). Digestive Strategies of Nonhuman Primates. Unpublished PhD Thesis. The Australian National University, Canberra.Google Scholar
  8. Christesen, J. (1989). Colonic motility. In Handbook of Physiology. Section 6: Alimentary Canal, Volume I: Motility and Circulation, Part 2 (eds. Schultz, S. G., Wood, J. D. & Rauner, B. B.), American Physiological Society, Bethesda, MD, pp. 939-973.Google Scholar
  9. Clark, C. C. (1991). The nest protection hypothesis: The adaptive use of plant secondary compounds by European starlings. In Bird-parasite intearctions: ecology, evolution, and behaviour. (eds. Loye, J. E. and Zuk, M.), Oxford Unviersity Press, Oxford, pp. 205-221.Google Scholar
  10. Clayton, D. H. & Moore, J. (1997). Host-Parasite Evolution. General Principles & Avian Models. Oxford Unviversity Press, Oxford.Google Scholar
  11. Cowen, R. (1990). Medicine on the wild side. Science News 138: 280-282.Google Scholar
  12. Cox, F. E. G. (1993). Modern Parasitology 2nd edition, Blackwell Scientific Press, Oxford.Google Scholar
  13. Elliott, T. R. & Barclay-Smith, E. (1904). Antiperistalsis and other muscular activity of the colon. J. Physiol. 31: 272-304.Google Scholar
  14. Ewald, P. W. (1994). Evolution of Infectious Disease. Oxford University Press, Oxford.Google Scholar
  15. Futuyma, D. J. & Slatkin, M. (1983). Coevolution. Sinauer Associates Inc., Sunderland, MA.Google Scholar
  16. Freeland, W. F. (1980). Mangaby (Cercocebus albigena) movement patterns in relation to food availability and fecal contamination. Ecology, 61(6): 1297-1303.Google Scholar
  17. Gasser, R. B., Woods, W. G., Huffman, M. A., Blotkamp, J. & Polderman, A. M. (1999). Molecular seperation of Oesophagostomum staphanostomum and Oesophagostomum bifurcum (Nematoda: Strongyloidea) from non-human primates. Int. J. Parasitol. 29: 1087-1091.Google Scholar
  18. Gompper, M. E. & Holyman, A. M. (1993). Grooming with Trattinnickia resin: possible pharmaceutical plant use by coatis in Panama. J. Trop. Ecol. 9: 533-540.Google Scholar
  19. Gordon, H. Mc. L. (1949). Phenothiazine and Oesopagostomiasis. Vet. Rec., 61: 509-510.Google Scholar
  20. Gustavson, C. R. (1977). Comparative and field aspects of learned food aversions. In Learning mechanisms in food selection. (eds. Barker, L. M., Best, M. R. & Domjan, M.), Baylor University Press, Baylor, TX., pp. 23-43.Google Scholar
  21. Guyton, A. C. (1976). Textbook of Medical Physiology. Philadelphia: W.B. SaundersGoogle Scholar
  22. Hart, B. L. (1990). Behavioral adaptations to pathogens and parasites: Five strategies. Neurosci. Biobehav. Rev. 14: 273-294.Google Scholar
  23. Hausfater, G. & Meade, B. J. (1982). Alternation of sleeping groves by yellow baboons (Papio cynocepahalus) as a strategy for parasite avoidance. Primates 23: 287-297.Google Scholar
  24. Huffman, M. A. (1997). Current evidence for self-medication in primates: a multidisciplinary perspective. Yrbk. Phys. Anthro. 40: 171-200.Google Scholar
  25. Huffman, M. A., Gotoh, S., Izutsu, D., Koshimizu, K. & Kalunde, M. S. (1993). Further observations on the use of Vernonia amygdalina by a wild chimpanzee, its possible effect on parasite load, and its phytochemistry. Afric. Stud. Monogr. 14(4): 227-240.Google Scholar
  26. Huffman, M. A., Gotoh, S., Turner, L. A., Hamai, M. & Yoshida, K. (1997). Seasonal trends in intestinal nematode infection and medicinal plant use among chimpanzees in the Mahale Mountains, Tanzania. Primates 38(2): 111-125.Google Scholar
  27. Huffman, M. A., Ohigashi, H., Kawanaka, M., Page, J. E., Kirby, G. C., Gasquet, M., Murakami, A. & Koshimizu, K. (1998). African great ape self-medication:Anew paradigm for treating parasite disease with natural medicines. In: Towards Natural Medicine Research in the 21st Century, Ebizuka, Y. (ed.), Elsevier Science B. V. Excerpta Medica, Amsterdam, pp. 113-123.Google Scholar
  28. Huffman, M. A., Page, J. E., Sukhdeo, M. V. K., Gotoh, S., Kalunde, M. S., Chandrasiri, T. & Towers, G. H. N. (1996). Leaf-swallowing by chimpanzees, a behavioral adaptation for the control of strongyle nematode infections. Int. J. Primatol. 72(4): 475-503.Google Scholar
  29. Idani, G. (1986). Seed dispersal by pygmy chimpanzees (Pan paniscus): A preliminary report. Primates 27:441-447.Google Scholar
  30. Karim, N. & Yang C. O. (1992). Oesophagostomiasis in man: report of the first Malaysian case with empahsis on its pathology. Malaysian J. Pathology 14: 19-24.Google Scholar
  31. Keymer, A., Crompton, D. W. T. & Sahakian, B. J. (1983). Parasite induced learned aversion involving Nippostrongylus in rats. Parasitology, 86: 455-460.Google Scholar
  32. Krepel, H. P. (1994). Oesophagostomum bifurcum infection in man. A study on the taxonomy, diagnosis, epidemiology and drug treatment of Oesophagotsomum bifurcum in northern Togo and Ghana. Doctoral Thesis, Unviersity of Leiden.Google Scholar
  33. Krepel, H. P., Baeta, S., Kootstra, C. J. & Polderman, A. M. (1995). Reinfection patterns of Oesophagostomum bifurcum and hookworm after anthelmintic treatment. Trop. Geogr. Med. 47: 160-163.Google Scholar
  34. Krepel, H. P. & Polderman, A. M. (1992). Egg production of Oesophagostomum bifurcum, a locally common parasite of humans in Togo. Am. J. of Trop. Med. Hygiene. 46: 469-472.Google Scholar
  35. Kyriazakis, I., Oldham, J. D., Coop, R. L. & Jackson, F. (1994). The effect of subclinical intestinal nematode infection on the diet selection of growing sheep. British J. Nutrit. 72: 665-677.Google Scholar
  36. Lumb, G.D., Beamer, P. R. & Rust, J. H. (1985). Oesophagostomiasis in feral monkeys (Macaca mulatta). Toxicol Pathol. 13: 209-214.Google Scholar
  37. Malagelada, J-R. & Azpiroz, F. (1989). Determinants of gastric emptying and transit in the small intestine. In Handbook of Physiology. Section 6: Alimentary Canal, Volume I: Motility and Circulation, Part 2 (eds. Schultz, S.G., Wood, J. D. & Rauner, B.B.), American Physiological Society, Bethesda, MD, pp. 909-937.Google Scholar
  38. McClure, H. M. & Guilloud, N. B. (1971). Comparative pathology of the chimpanzee. In The Chimpanzee Vol. 4. (ed. Bourne, G. H.), Karger, Basel, pp. 103-272.Google Scholar
  39. Messner, E. J. & Wrangham, R. W. (1996). In vitro testing of the biological activity of Rubia cordifolia leaves on primate Strongyloide species. Primates 37: 105-108.Google Scholar
  40. Milton, K. & Demment, M. W. (1988). Digestion and passage kinetics of chimpanzees fed high and low fiber diets and comparison with human data. J. Nutrition 118: 1-7.Google Scholar
  41. Nelson, G. S. (1960). Schistosome infections as zoonoses in Africa. Tanscrip. Royal soc. Trop.Med. Hyg. 54: 301-314.Google Scholar
  42. Nishida, T. (1990). A quarter century of research in the Mahale Mountains: An overview. In The chimanzees of the Mahale Mountains: Sexual and life history strategies. (ed. Nishida, T.), Tokyo Unviersity Press, Tokyo, pp. 63-97.Google Scholar
  43. Ohigashi, H., Huffman, M. A., Izutsu, D., Koshimizu, K., Kawanaka, M., Sugiyama, H., Kirby, G. C., Warhurst, D. C., Allen, D., Wright, C. W., Phillipson, J. D., Timon-David, P., Delmas, F., Elias, R. & Balansard, G. (1994). Toward the chemical ecology of medicinal plant-use in chimpanzees: The case of Vernonia amygdalina Del. A plant used by wild chimpanzees possibly for parasite-related diseases. J. Chem. Ecol. 20: 541-553.Google Scholar
  44. Page, J. E., Huffman, M. A., Smith, V. & Towers, G. H. N. (1997). Chemical basis for medicinal consumption of Aspilia (Asteraceae) leaves by chimpanzees: A re-analysis. J. Chemical Ecology 23(9): 2211-2225.Google Scholar
  45. Petkevicius, S., Nansen, P., Bach Knudsen, K. E. & Skjoeth, F. (1999). The effects of increasing levels of insoluble dietary fibre on the establishment and persistence of Oesophagostomum dentatum in pigs. Parasite 6: 17-26.Google Scholar
  46. Polderman, A. M. & Blotkamp, J. (1995). Oesophagostomum infections in humans. Parasitology Today 11(12): 451-456.Google Scholar
  47. Rauch, R. (1954). Studies on the helminth fauna of Alaska. XXI. Taxonomy, morphological variation, and ecology of Diphyllobothirium ursi n. sp. provis. onKodiak Island. J. Parasitol 40: 540-563.Google Scholar
  48. Rauch, R. (1961). Notes on the black bear, Ursus americanus Pallas, in Alaska with particular reference to dentition and growth. Z. Saugetierk 26: 77-107.Google Scholar
  49. Rodriguez, E. & Wrangham, R. W. (1993). Zoopharmacognosy: The use of medicinal plants by animals. In Recent Advances in Phytochemistry, Vol. 27 Phytochemical Potential of Tropic Plants. (eds. Downum, K. R., Romeo, J. T. & Stafford, H.), Plenum Press, New York, NY, pp. 89-105.Google Scholar
  50. Rousselot, R. & Pellissier, A. (1952). Pathologie du gorille. III. Oesophagostomose nodulaire a Oesophagostomum stephanostomum du gorille et du chimpanze. Bull. Path. exot. 45: 568-574.Google Scholar
  51. Sengputa, S. (1981). Adaptive significance of the use of margosa leaves in nests of house sparrows Passer domesticus. Emu 81: 114-115.Google Scholar
  52. Takasaki, H., Nishida, T., Uehara, S., Norikoshi, K., Kawanaka, K., Takahata, Y. Hiraiwa-Hasegawa,., Hasegawa, T., Hayaki, H., Masui, M. & Huffman, M. A. (1990). Summary of meteorological data at Mahale Research camps, 1973-1988. In: The Chimpanzees of the Mahale Mountains: Sexual and Life History Strategies. (ed. T. Nishida), University of Tokyo Press, Tokyo, pp. 290-300.Google Scholar
  53. Taylor, E. L. & Michel, J. F. (1953). The parasitological and pathological significance of arrested development in nematodes. J. Helminthology 27(3/4): 199-205.Google Scholar
  54. Toft, C. A., Aeschlimann, A. & Bolis, L. (1991). Parasite-Host Associations; Coexistence or Conflict? Oxford Science Publications, Oxford.Google Scholar
  55. Wakelin, D. (1996). Immunity to Parasites-How Parasitic Infections are Controlled. 2nd edition Cambridge University Press, Cambridge.Google Scholar
  56. Warner, A. C. I. (1981). Rate of passage of digesta through the gut of mammals and birds. Nutritional Abstracts Review B51: 789-820.Google Scholar
  57. Weisbrodt, N. W. (1987). Motility of the small intestine. In Physiology of the Gastro-intestinal Tract. Second edition. (ed. Robinson, L. R.), Raven Press, New York, pp. 631-663.Google Scholar
  58. Wrangham, R. W. (1977). Feeding behavior of chimpanzees in Gombe National Park, Tanzania. In Primate Ecology (ed. Clutton-Brock, T. H.), Academic Press, London, pp. 504-538.Google Scholar
  59. Wrangham, R.W. (1995). Relationship of chimpanzee leaf-swallowing to a tapeworm infection. Am. J. Primatol 37: 297-303.Google Scholar
  60. Wrangham, R.W. & Goodall, J. (1989). Chimpanzee use of medicinal leaves. In Understanding Chimpanzees. (eds. Heltne, P. G. & Marquardt, L. A.), Harvard University Press, Cambridge, pp. 22-37.Google Scholar
  61. Wrangham, R. W. & Nishida, T. (1983). Aspilia spp. leaves: A puzzle in the feeding behavior of wild chimpanzees. Primates 24: 276-282.Google Scholar
  62. Yamashita, J. (1963) Ecological relationships between parasites and primates. Primates 4(1): 1-96.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  1. 1.Primate Research InstituteKyoto UniversityJapan
  2. 2.Australian National UniversityAustralia

Personalised recommendations