Skip to main content
Log in

Evaluation of the coronary venous system using electron beam computed tomography

  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

New therapeutic strategies in interventional cardiology and electrophysiology involve the coronary veins. This study examines the potential usefulness of electron beam computed tomography to obtain detailed noninvasive definition of the coronary venous anatomy and of arteriovenous relationships. Electron beam computed tomography allows acquisition and three-dimensional reconstruction of tomographic images of the beating heart with high spatial and temporal resolution. Contrast-enhanced, thin-section electron beam computed tomographic coronary arteriographic images of 34 patients (21 men and 13 women, age 60 ± 10 years) were analyzed. The visibility of the coronary veins and their spatial relationship to the coronary arteries were assessed qualitatively on two- and three-dimensional displays. The coronary sinus was visible in 91%, the great cardiac vein in 100%, the middle cardiac vein in 88%, at least one vein overlying the lateral surface of the left ventricle in 97%, the anterior interventricular vein in 97%, and the small cardiac vein in 68%. A left marginal and a left posterior vein were seen in 44%, one of the two in 38%, and neither in 3%. The course of the anterior interventricular vein was parallel to the left anterior coronary artery in 79% and a crossover between the two vessels at an obtuse angle occurred in 12%. Contrast-enhanced electron beam computed tomography imaging of the heart noninvasively provides information on the coronary venous system and arteriovenous relationships that may help guide new interventional procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kar S, Nordlander R. Coronary veins: an alternate route to ischemic myocardium. Heart Lung 1992; 21: 148-157.

    Google Scholar 

  2. Wen MS, Yeh SJ, Wang CC, King A, Lin FC, Wu D. Radiofrequency ablation therapy of the posteroseptal accessory pathway. Am Heart J 1996; 132: 612-620.

    Google Scholar 

  3. Oesterle SN, Yeung AC, Hayase M, et al. Percutaneous in situ coronary artery bypass (PICAB): a novel myocardial revascularization technique [abstract].J Am Coll Cardiol 1998; 31Suppl A: 223A.

    Google Scholar 

  4. Yeung AC, Hayase M, Fitzgerald P, et al. Percutaneous in situ coronary artery bypass (PICAB): current development status and preliminary results of a novel myocardial revascularization technique [abstract].J Am Coll Cardiol 1999; 33Suppl A: 47A.

    Google Scholar 

  5. Carter AJ, Kornowski R, Lamson T, et al. Percutaneous in situ coronary venous arterial bypass: initial results of retrograde myocardial perfusion in a porcine model [abstract]. J Am Coll Cardiol 1999; 33Suppl A: 49.

    Google Scholar 

  6. Blanc JJ, Benditt DG, Gilard M, Etienne Y, Mansourati J, Lurie KG. A method for permanent transvenous left ventricular pacing. Pacing Clin Electrophysiol 1998; 21: 2021-2024.

    Google Scholar 

  7. Daubert JC, Ritter P, Le Breton H, et al. Permanent left ventricular pacing with transvenous leads inserted into the coronary veins. Pacing Clin Electrophysiol 1998; 21: 239-245.

    Google Scholar 

  8. Meisel E, Butter Ch, Glikson M, et al. Untersuchung der Verfügbarkeit von Koronarvenen für die Plazierung von Schrittmacher-und Defibrillationselektroden mittels Venographie [abstract].Zeitschrift für Kardiologie 1999; 88Suppl 1: 99.

    Google Scholar 

  9. Pfeiffer D, Butter C, Meisel E, et al. Evaluation of coronary vein accessibility for implant of a defibrillating ICD and/or pacing lead system [abstract].J Am Coll Cardiol 1999; 33Suppl A: 112A.

    Google Scholar 

  10. Schumacher B, Tebbenjohanns J, Pfeiffer D, Omran H, Jung W, Luderitz B. Prospective study of retrograde coronary venography in patients with posteroseptal and left-sided accessory atrioventricular pathways. Am Heart J 1995; 130: 1031-1039.

    Google Scholar 

  11. Rumberger JA. Ultrafast computed tomography scanning modes, scanning planes and practical aspects of contrast administration. In: Stanford W, Rumberger JA, editors. Ultrafast Computed Tomography in Cardiac Imaging: Principles and Practice. Mount Kisco, NY: Futura Publishing Company, 1992; 17-24.

    Google Scholar 

  12. Schmermund A, Rensing BJ, Sheedy PF, Bell MR, Rumberger JA. Intravenous electron-beam computed tomographic coronary angiography for segmental analysis of coronary artery stenoses. J Am Coll Cardiol 1998; 31: 1547-1554.

    Google Scholar 

  13. Achenbach S, Moshage W, Ropers D, Nossen J, Daniel WG. Value of electron-beam computed tomography for the noninvasive detection of high-grade coronary-artery stenoses and occlusions. N Engl J Med 1998; 339: 1964-1971.

    Google Scholar 

  14. Reddy GP, Chernoff DM, Adams JR, Higgins CB. Coronary artery stenoses: assessment with contrast-enhanced electron-beam CT and axial reconstructions. Radiology 1998; 208: 167-172.

    Google Scholar 

  15. Nakanishi T, Ito K, Imazu M, Yamakido M. Evaluation of coronary artery stenoses using electron-beam CT and multiplanar reformation. J Comput Assist Tomogr 1997; 21: 121-127.

    Google Scholar 

  16. Moshage WE, Achenbach S, Seese B, Bachmann K, Kirchgeorg M. Coronary artery stenoses: three-dimensional imaging with electrocardiographically triggered, contrast agent-enhanced, electron-beam CT. Radiology 1995; 196: 707-714.

    Google Scholar 

  17. Achenbach S, Moshage W, Bachmann K. Detection of high-grade restenosis after PTCA using contrast-enhanced electron beam CT. Circulation 1997; 96: 2785-2788.

    Google Scholar 

  18. Achenbach S, Moshage W, Ropers D, Nossen J, Bachmann K. Noninvasive, three-dimensional visualization of coronary artery bypass grafts by electron beam tomography. Am J Cardiol 1997; 79: 856-861.

    Google Scholar 

  19. Baroldi G, Scomazzoni G. Coronary Circulation in the Normal and the Pathologic Heart. 2nd ed. Washington D.C.: Office of the Surgeon General, Department of the Army, 1967: 59-96.

    Google Scholar 

  20. McMinn RMH, Hutchings RT, Pegington J, Abrahams P. Color Atlas of Human Anatomy. 3rd ed. St Louis: Mosby-Year Book Europe Limited, 1993: 167-175.

    Google Scholar 

  21. Chernoff DM, Ritchie CJ, Higgins CB. Evaluation of electron beam CT coronary angiography in healthy subjects. AJR Am J Roentgenol 1997; 169: 93-99.

    Google Scholar 

  22. Halpern EJ, Wechsler RJ, DiCampli D. Threshold selection for CT angiography shaded surface display of the renal arteries. J Digit Imaging 1995; 8: 142-147.

    Google Scholar 

  23. Achenbach S, Moshage W, Ropers D, Bachmann K. Comparison of vessel diameters in electron beam tomography and quantitative coronary angiography. Int J Card Imaging 1998; 14: 1-7.

    Google Scholar 

  24. Ropers D, Achenbach S, Moshage W, Nossen J, Bachmann K. Quantitative analysis of the vascular diameter in coronary artery imaging using electron beam tomography: phantom studies and comparison with coronary angiography [German].Biomed Tech (Berl) 1997; 42 Suppl: 251-252.

    Google Scholar 

  25. Uchino A, Kato A, Kudo S. CT angiography using electron-beam computed tomography (EBCT): a phantom study. Radiat Med 1997; 15: 273-276.

    Google Scholar 

  26. Achenbach S, Moshage W, Bachmann K. Noninvasive coronary angiography by contrast-enhanced electron beam computed tomography. Clin Cardiol 1998; 21: 323-330.

    Google Scholar 

  27. Knez A, Becker C, Ohnesorge B, Haberl R, Reiser M, Steinbeck G. Noninvasive detection of coronary artery stenosis by multislice helical computed tomography. Circulation 2000; 101: E221-E222.

    Google Scholar 

  28. Botnar RM, Stuber M, Danias PG, Kissinger KV, Manning WJ. A fast 3D approach for coronary MRA. J Magn Reson Imaging 1999; 10: 821-825.

    Google Scholar 

  29. Lorenz CH, Johansson LO. Contrast-enhanced coronary MRA. J Magn Reson Imaging 1999; 10: 703-708.

    Google Scholar 

  30. Wexler L, Brundage B, Crouse J, et al. Coronary artery calcification: pathophysiology, epidemiology, imaging methods, and clinical implications. A statement for health professionals from the American Heart Association. Writing Group. Circulation 1996; 94: 1175-1192.

    Google Scholar 

  31. Cazeau S, Ritter P, Lazarus A, et al. Multisite pacing for end-stage heart failure: early experience. Pacing Clin Electrophysiol 1996; 19: 1748-1757.

    Google Scholar 

  32. Gras D, Mabo P, Tang T, et al. Multisite pacing as a supplemental treatment of congestive heart failure: preliminary results of the Medtronic Inc. InSync study. Pacing Clin Electrophysiol 1998; 21: 2249-2255.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerber, T.C., Sheedy, P.F., Bell, M.R. et al. Evaluation of the coronary venous system using electron beam computed tomography. Int J Cardiovasc Imaging 17, 65–75 (2001). https://doi.org/10.1023/A:1010692103831

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010692103831

Navigation