Skip to main content
Log in

Distributivity in Łℵ0 and Other Sentential Logics

  • Published:
Journal of Automated Reasoning Aims and scope Submit manuscript

Abstract

Certain distributivity results for Łukasiewicz's infinite-valued logic Łℵ0 are proved axiomatically (for the first time) with the help of the automated reasoning program OTTER. In addition, non distributivity results are established for a wide variety of positive substructural logics by the use of logical matrices discovered with the automated model-finding programs MACE and MAGIC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Anderson, A. and Belnap, N.: Entailment: The Logic of Relevance and Necessity, Princeton University Press, 1975.

  2. Beavers, G.: Distribution in Łukasiewicz logics, Bull. Sect. Logic 21(4) (1992), 140-146.

    Google Scholar 

  3. Belnap, N.: Life in the undistributed middle, in P. Schroeder-Heister and K. Došen (eds.), Substructural Logics, Clarendon Press, 1993.

  4. Brady, R.: Natural deduction systems for some quantified relevant logics, Logique et Analyse 27 (1984), 355-377.

    Google Scholar 

  5. Chang, C.: Proof of an axiom of Łukasiewicz, Trans. Amer. Math. Soc. 87 (1958), 55-56.

    Google Scholar 

  6. Chang, C.: A new proof of the completeness of the Łukasiewicz axioms, Trans. Amer. Math. Soc. 93 (1959), 74-80.

    Google Scholar 

  7. Cignoli, R. and Mundici, D.: An elementary proof of Chang's completeness theorem for the infinite-valued calculus of Łukasiewicz, Studia Logica 58(1) (1997), 79-97.

    Google Scholar 

  8. Davey, B. and Priestley, H.: Introduction to Lattices and Order, Cambrige University Press, 1990.

  9. Dunn, J.: Relevance logic and entailment, in D. Gabbay and F. Guenther (eds.), Handbook of Philosophical Logic, Vol. III., D. Reidel, 1986.

  10. Kalman, J.: Condensed detachment as a rule of inference, Studia Logica 42 (1983), 443-451.

    Google Scholar 

  11. Kneale, W. and Kneale, M.: The Development of Logic, Clarendon Press, 1962.

  12. Langford,C.: Analytical completeness of postulate sets, Proc. London Math. Soc. 25 (1926), 115-142.

    Google Scholar 

  13. Łukasiewicz, J.: Selected Works, North-Holland, 1970.

  14. McCune, W.: Personal (email) communication, 2000.

  15. McCune, W.: A Davis-Putnam program and its application to finite first-order model search: Quasigroup existence problems, Technical Report, Agronne National Laboratory, Argonne, IL, 1994.

    Google Scholar 

  16. McCune, W.: OTTER 3.0 reference manual and guide, ANL-94/6, Technical Report, Argonne National Laboratory, Argonne, IL, 1994.

    Google Scholar 

  17. Meredith, C.: The dependence of an axiom of Łukasiewicz, Trans. Amer. Math. Soc. 87 (1998), 54.

    Google Scholar 

  18. Ono, H. and Komori, Y.: Logics without the contraction rule, J. Symbolic Logic 50 (1990), 169-201.

    Google Scholar 

  19. Prior, A.: Formal Logic, 2nd edn, Clarendon Press, 1960.

  20. Read, S.: Relevant Logic, Basil Blackwell, 1988.

  21. Restall, G.: An Introduction to Substructural Logics, Routledge, 2000.

  22. Rose, A.: Formalisation du calcul propositionnel implicatif à ℵ0 valeurs de Łukasiewicz, C.R. Acad. Sci. Paris 243 (1956), 1183-1185.

    Google Scholar 

  23. Rose, A. and Rosser, J.: Fragments of many-valued statement calculi, Trans. Amer. Math. Soc. 87 (1958), 1-53.

    Google Scholar 

  24. Scott, D.: Completeness and axiomatizability in many-valued logic, in Proceedings of the Tarski Symposium (Proc. Sympos. Pure Math., Vol. XXV, Univ. California, Berkeley, Calif., 1971), Amer. Math. Soc., 1974.

  25. Staney, J.: MAGIC, Matrix Generator for Implication Connectives: Release 2.1 notes and guide, TR-ARP-11-95, Technical Report, Automated Reasoning Project, Australian National University, 1995.

  26. Urquhart, A.: Many-valued logic, in: D. Gabbay and F. Guenther (eds.), Handbook of Philosophical Logic, Vol. III, D. Reidel, 1986.

  27. Veroff, R.: Using hints to increase the effectiveness of an automated reasoning program: Case studies, J. Automated Reasoning 16(3) (1996), 223-239.

    Google Scholar 

  28. Wajsberg, M.: Logical Works, Polish Academy of Sciences, 1997.

  29. Wos, L.: The resonance strategy, Comput. Math. Appl. 29(2) (1995), 133-178.

    Google Scholar 

  30. Wos, L.: The Automation of Reasoning: An Experimenter's Notebook with OTTER Tutorial, Academic Press, 1996.

  31. Wos, L. and McCune, W.: The application of automated reasoning to proof translation and to finding proofs with specified properties: A case study in many-valued sentential calculus, Technical Report, Argonne National Laboratory, Argonne, IL, 1991.

    Google Scholar 

  32. Wos, L. and Pieper, G. W.: A Fascinating Country in the World of Computing: Your Guide to Automated Reasoning, World Scientific, 1999.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harris, K., Fitelson, B. Distributivity in Łℵ0 and Other Sentential Logics. Journal of Automated Reasoning 27, 141–156 (2001). https://doi.org/10.1023/A:1010687609134

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010687609134

Navigation