Skip to main content
Log in

Thermodynamic modeling of actinide complexation with oxalate at high ionic strength

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A geochemical model describing the solubility of actinides in underground water at the Waste Isolation Pilot Plant (WIPP) Project is under development. The database for this model consists of standard chemical potentials and Pitzer model parameters for hundreds of species that may be present in the WIPP disposal room. Organic ligands used in separation and decontamination processes may be present in the nuclear wastes placed in the WIPP site and could have a significant impact on mobile actinide concentrations. In this work the β1 and β2 stability constants of NpO2 +, UO2 2+, Am3+ and Th4+ with the oxalate anion have been measured in 0.3–5.0M NaCl media at 25 °C by a solvent extraction technique. For the 1:1 complexation, the values of the stability constants increased in the order: NpO2 +<Am3+<UO2 2+<Th4+, in accordance with the actinide charge density and reflecting the strongly ionic bonding of the complexes. The Pitzer ionic interaction model was used to model the data. Because the data were collected mainly in the high ionic strength region, values of β(1) were estimated from these plus literature values. The Pitzer model gives a good representation of the data using three interaction parameters β(0), β(1), and cφ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U.S. Department of Energy, Title 40 CFR Part 191, Compliance Certification Application for Waste Isolation Pilot Plant, DOE/CAO-1996-2184; Waste Isolation Pilot Plant, Carlsbad Area Office, Carlsbad, NM, October 1996.

    Google Scholar 

  2. M. S. Caceci, G. R. Choppin, Radiochim. Acta, 33 (1983) 101.

    Google Scholar 

  3. F. RÖsch, T. Reimann, V. Buklanov, M. Milanov, V. A. Khalkin, R. Dreyer, J. Radioanal. Nucl. Chem., 140 (1990) 159.

    Google Scholar 

  4. J. Stary, Talanta, 13 (1966) 421.

    Google Scholar 

  5. K. S. Rajan, A. E. Martell, J. Inorg. Nucl. Chem., 29 (1967) 523.

    Google Scholar 

  6. G. R. Choppin, H. Bokelund, L. Valkiers, Radiochim. Acta, 33 (1983) 229.

    Google Scholar 

  7. L. R. Van Loon, Z. Kopajtic, Radiochim. Acta, 54 (1991) 199.

    Google Scholar 

  8. A. Ramanujam, V. V. Ramakrishna, S. K. Patil, Radiochem. Radioanal. Letters, 31 (1977) 119.

    Google Scholar 

  9. J. M. Beiriger, P. M. Grant, J. Inorg. Nucl. Chem., Letters, 154 (1991) 89.

    Google Scholar 

  10. B. E. Stout, M. S. Caceci, F. Nectoux, M. Pages, G. R. Choppin, Radiochim. Acta, 46 (1989) 181.

    Google Scholar 

  11. D. M. Gruen, J. J. Katz, J. Am. Chem. Soc., 75 (1953) 3772.

    Google Scholar 

  12. Y. Inoue, O. Tochiyama, Polyhedron, 2 (1983) 627.

    Google Scholar 

  13. C. E. Harvie, N. MØller, J. H. Weare, Geochim. Cosmochim. Acta, 48 (1984) 723.

    Google Scholar 

  14. C. F. Novak, R. C. Moore, R. V. Bynum, Prediction of Dissolved Actinide Concentrations in Concentrated Electrolyte Solutions: A Conceptual Model and Model Calculations for the Waste Isolation Pilot Plant (WIPP), Proc. Intern. Conf. on Deep Geological Disposal of Radioactive Wastes, Winnipeg, Manitoba, Canada, Sept. 16-19, 1996; SAND 96-2695c.

  15. C. F. Novak, M. Borkowski, G. R. Choppin, Radiochim. Acta, 74 (1996) 111.

    Google Scholar 

  16. J. Mizera, A. H. Bond, G. R. Choppin, R. C. Moore, Dissociation Constants of Carboxylic Acids at High Ionic Strengths, in: Actinide Speciation in High Ionic Strength Media, D. T. Reed, S. Clark, L. Rao (Eds), Plenum, New York, 1999, p. 113.

    Google Scholar 

  17. K. S. Pitzer, J. Phys. Chem., 77 (1973) 268.

    Google Scholar 

  18. S. Babb, C. Novak, R. C. Moore, WIPP PA Users Manual for NONLIN, Version 2.0, January 31, 1996, WPO#30740.

  19. A. R. Felmy, D. Rai, M. J. Mason, Radiochim. Acta, 55 (1991) 177.

    Google Scholar 

  20. A. R. Felmy, K. S. Pitzer, J. Phys. Chem., 96 (1992) 11065.

    Google Scholar 

  21. Th. Fanghanel, V. Neck, J. L. Kim, Radiochim. Acta, 69 (1995) 169.

    Google Scholar 

  22. K. S. Pitzer, Activity Coefficients in Electrolyte Solutions. Boca Raton, Florida, CRC Press, 1991.

    Google Scholar 

  23. R. N. Roy, K. M. Vogel, C. E. Good, W. B. Davis, L. N. Roy, D. A. Johnson, J. Phys. Chem., 96 (1992) 11065.

    Google Scholar 

  24. V. Neck, J. I. Kim, B. Kanellakopulos, Thermodynamic Behavior of Neptunium(V) in Concentrated NaCl and NaClO4 Solutions, Report KfK 5301, 1994.

  25. R. E. Mesmer, C. S. Patterson, C. H. Busey, H. F. Holmes, J. Phys. Chem., 93 (1989) 7483.

    Google Scholar 

  26. M. Borkowski, G. R. Choppin, R. C. Moore, S. J. Free, Inorg. Chim. Acta, 298 (2000) 141.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borkowski, M., Moore, R.C., Bronikowski, M.G. et al. Thermodynamic modeling of actinide complexation with oxalate at high ionic strength. Journal of Radioanalytical and Nuclear Chemistry 248, 467–471 (2001). https://doi.org/10.1023/A:1010665116893

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010665116893

Keywords

Navigation