Skip to main content
Log in

Environmental Monitoring of Heavy Metals and Arsenic from Ag-Pb-Zn Mining. A Case Study over Two Millennia

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

2000 years of mining activity at Wiesloch, Germanyleft behind a legacy of mining wastes, some of which haveextremely high contents of toxic elements like As, Cd, Tl,Sb, Pb and Zn. To evaluate their long-term impact ondifferent environmental compartments, the detailedenvironmental monitoring presented here focused on themineralogical and chemical characterization of thedifferent waste materials, consisting of dumpings with orefragments, flotation tailings and medieval metallurgicalslags. Leaching experiments with these materials, usingeluents of different compositions and pHs were carried outto assess the conditions governing the mobilization and re-fixation of these species. It was shown, that the carbonatehost rock of the mineralization, the loess blanket coveringthe area and the organically rich municipal sewage sludgesdeposited on top of the tailings, represent potentialbarriers to the dispersion of toxic elements over a muchlarger area. Moreover, particulate emissions from thesteep, unvegetated escarpments of the tailing heapsrepresent a continuous thread to the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adriano, D. C.: 1986, Trace Elements in the Terrestrial Environment, Springer, New York.

    Google Scholar 

  • Ahn, J. S., Chon, H. T., Son, A. J. and Kim, K.W.: 1999, ‘Arsenic and heavy metal contamination and their uptake by rice crops around the Kubong Au-Ag –mine’, J. of Mineral and Energy Resources 36, 159–169.

    Google Scholar 

  • Appelo, C. A. J. and Postma, D.: 1993, Geochemistry, Groundwater and Pollution, Balkema – Rotterdam, 536 p.

    Google Scholar 

  • Bartschat, B. M., Carnabiss, S. E. and Morel, F. M. M.: 1992, ‘Oligoelectrolyte model for cation binding by humic substances’, Environ. Sci. Technol. 26, 284–294.

    Google Scholar 

  • Benedetti, M., Milne, C. J., Kinniburgh, D. G., Van Riemskijk and Koopal, L.: 1995, ‘Metal ion binding to humic substances: application of the non-ideal competitive adsorption model’, Environ. Sci. Technol. 29, 446–457.

    Google Scholar 

  • Benner, S. G., Blowes, D.W., Gould, W. D., Herbert, R. B., jr. and Ptacek, J.: 1999, ‘Geochemistry of permeable reactive barrier for metals and acid mine drainage’, Environ. Sci. Technol. 33, 2793–2799.

    Google Scholar 

  • Blowes, D.W.: 1997, ‘The environmental effects of mine wastes’, in: A. G. Gubins (ed.), Proceedings of Exploration 97, Fourth Decennial International Conference on Mineral Exploration, 887–892.

  • Brion, D.: 1980, ‘Etude par spectroscopie de photoelectrons de la degradation superficielle de FeS2, CuFeS2, ZnS, PbS à l'air et dans l'eau’, Appl. Surface Sci. 5, 133–152.

    Google Scholar 

  • Chon, H-T. and Ahn, J. S.: 2000, ‘Dispersion of heavy metals in the vicinity of some base-metal and Au-Ag mines in Korea: A review’, Appl. Min., Rammlmair et al. (eds), Balkema, Rotterdam, 273–276.

    Google Scholar 

  • Dekowski, N.: 1942, ‘Die Erzführung der Grube “Segen Gottes” in Wiesloch (Baden) unter besonderer Berücksichtigung der Aufbereitung der arsenhaltigen Schwefelkiese’, Metall und Erz 39, 381–385; 401–407.

    Google Scholar 

  • Dove, P. M. and Rimstidt, J. D.: 1985, ‘The solubility and stability of scorodite, FeAsO4 x 2H2O’, Am. Miner. 70, 834–844.

    Google Scholar 

  • Frimmel, F. H. and Huber, L.: 1996, ‘Influence of humic substances on the aquatic adsorption of heavy metals on defined mineral phases’, Environ. Int. 22, 507–517.

    Google Scholar 

  • Goldenberg, G., Otto, J., and Steuer, H.: 1996, ‘Archäometallurgische Untersuchungen zum Metallhüttenwesen im Schwarzwald’, Thorbecke Verlag, Sigmaringen, Germany, 336 p.

    Google Scholar 

  • Hildebrandt, L. H.: 1985, ‘Geologie und Genese der Wieslocher Lagerstätte’, Lapis 12, 13–14.

    Google Scholar 

  • Hildebrandt, L. H.: 1998, ‘Schwermetallbelastungen durch den historischen Bergbau im Raum Wiesloch’, unpublished doctor thesis, University of Heidelberg, Germany, 364 p.

    Google Scholar 

  • Hildebrandt, L. H. und Mohr: 1985, ‘Der Bergbau bei Wiesloch. Ñber 2000 Jahre Silber-, Blei-und Zinkgewinnung’, Lapis 12, 15–22.

    Google Scholar 

  • Hodel, M.: 1994, ‘Untersuchungen zur Festlegung und Mobilisierung der Elemente As, Cd, Ni und Pb an ausgewählten Festphasen unter besonderer Berücksichtigung des Einflusses von Huminstoffen’, Karlsruher Geochemische Hefte 5, 129 p.

  • Jung, M. C., Ahn, J. S., Chon, H. T., Cheong, Y. W. and Min, J. S.: 1999, ‘Investigation of Metal Contamination by Mine Wastes from Various Metalliferous Mines in Korea’, Proceedings of the Fifth Biennial SGA Meeting and the Tenth Quadrennial IAGOD Meeting, London, UK, 1187–1190.

  • Krauskopf, K. and Bird, D.: 1993, Introduction to Geochemistry, 3rd ed. McGraw Hill International, 747p.

  • Lewis, J. D.: 1971, ‘Spinifex texture in a slag as evidence for its origin in rocks’, Ann. Rept. Geol. Surv. Western Australia 1970, 45–49.

  • Lieber, W.: 1985, ‘Die Schalenblende von Wiesloch’, Lapis 12, 35–44.

    Google Scholar 

  • Min, J. S., Cheong, Y.W., Lee, H. J. and Lee, D. N.: 1997, ‘A Study on the Environmental and Safety Problems and their Remediation around Mining Areas’, KIGAM Research Report, KR-97©-32, Korea Institute of Geology, Mining and Materials, 479 p.

    Google Scholar 

  • Nesbitt, H.W., Muir, I. J. and Pratt, A. R.: 1995, ‘Oxidation of arsenopyrite by air-saturated, distilled water, and implications for mechanism of oxidation’, Geochim. Cosmochim. Acta 59, 1773–1786.

    Google Scholar 

  • Nicholson, R. V., Gillham, R. W. and Reardon, E. J.: 1990, ‘Pyrite oxidation in carbonate-buffered solution: 2. Rate control by oxide coatings’, Geochim. Cosmochim. Acta 54, 395–402.

    Google Scholar 

  • Park, J. J., Kim, M. K. and Chon, H. T.: 1997, ‘Dispersion of heavy metals in the geochemical environment around the Geumwang gold-silver mine’, Econ. Environ. Geol. 30, 407–416.

    Google Scholar 

  • Pierce, M. L. and Moore, C. B.: 1982, ‘Adsorption of arsenite and arsenate on amorphous iron hydroxide’, Water Res. 16, 1247–1253.

    Google Scholar 

  • Powell, R. M., Puls, R. W., Blowes, D. W., Vogan, J. L., Gillham, R. W., Schultz, D., Powell, P. P., Sivavec, T. and Landis, R.: 1998, ‘Permeable reactive barrier technologies for contaminant remediation’, Office of Research and Development, Office of solid waste and emergency response. USEPA, EPA/600/R-98/125.

  • Puchelt, H. and Berner, Z.: 1996, ‘Schwefel-34 (ä34S)’, in: H. Hötzl and B. Reichert (eds), ‘Schadstofftransport und Schadstoffabbau bei der Uferfiltration am Beispiel des Untersuchungsgebietes “Böckinger Wiesen” im Neckartal bei Heilbronn’, Schadstoffe im Grundwasser, Band 4 – VCH Verlagsgesellschaft Weinheim und Deutsche Forschungsgemeinschaft, 1996, 50–53.

  • Ramdohr, P.: 1952, ‘Ñber den Mineralbestand der Zink-und Blei-Lagerstätte von Wiesloch in Baden’, Fortschr. der Mineralogie 31, 13–14.

    Google Scholar 

  • Rimstidt, J. D., Chermak, J. A. and Gagen, P.: 1994, ‘Rates of Reaction of Galena, Sphalerite, Chalkopyrite, and Arsenopyrite with Fe(III) in Acidic Solutions’, in: C. N. Alpers and D. W. Blowes (eds), Environmental Geochemistry of Sulfide Oxidation, ACS Symposium Series 550, 5–13.

  • Rüde, T.: 1996, ‘Beiträge zur Geochemie des Arsens’, Karlsruher Geochemische Hefte 10, 206 p.

  • Sarveswara Rao, R. K., Das, R. P. and Ray, H. S.: 1991, ‘Study of leaching of multimetal sulphides through an interdisciplinary approach’, Mineral. Process. Extr. Metall. Rev. 7, 209–233.

    Google Scholar 

  • Schmitt, B.: 1985, ‘Die Mineralien der Grube “Segen Gottes”’, Lapis 12, 23–24.

    Google Scholar 

  • Seeliger, E: 1963, ‘Die Paragenese der Pb-Zn-Erzlagerstätte am Gänsberg bei Wiesloch (Baden) und ihre genetischen Beziehungen zu den Gängen im Odenwaldkristallin, zu Altwiesloch und der Vererzung der Trias des Kraichgaus’, Jh. Geol. Landesamt Baden-Württemberg 6, 239–299.

    Google Scholar 

  • Taylor, B. E. and Wheeler, M. C.: 1984, ‘Isotope composition of sulphate in acid mine drainage as measure of bacterial oxidation’, Nature 308, 538–541.

    Google Scholar 

  • Taylor, B. E. and Wheeler, M. C.: 1994, ‘Sulfur-and Oxygen-Isotope Geochemistry of Acid Mine Drainage in theWestern United States’, in: C. N. Alpers and D.W. Blowes (eds), Environmental Geochemistry of Sulfide Oxidation, ACS Symposium Series 550, 481–514.

  • Wäsch, M.: 1995, ‘Kontaminationspfade am Schafbuckel in Wiesloch (Baden)’, unpublished master thesis, University of Karlsruhe, Germany, 109 p.

    Google Scholar 

  • Weber, J. H.: 1988, ‘Binding and Transport of Metals by Humic Material’, in: F. H. Frimmel and R. F. Christman (eds): Humic Substances and Their Role in the Environment, Reports of the Dahlem Workshop 1987, John Wiley & Sons, Chichester, p. 165–178.

    Google Scholar 

  • Williamson, M. A. and Rimstidt, J. D.: 1994, ‘The kinetics and electrochemical rate-determining step of aqueous pyrite oxidation’, Geochim. Cosmochim. Acta 58, 5443–5454.

    Google Scholar 

  • Yea, D.-N. and Jin, C.-W.: 1974, ‘The process of crystal development of olivines in silicate melts’, Sci. Geol. Sinica, 349–354.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doris Stüben.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stüben, D., Berner, Z., Kappes, B. et al. Environmental Monitoring of Heavy Metals and Arsenic from Ag-Pb-Zn Mining. A Case Study over Two Millennia. Environ Monit Assess 70, 181–200 (2001). https://doi.org/10.1023/A:1010663631647

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010663631647

Navigation