Skip to main content
Log in

Comparison of two ultra-sensitive methods for the determination of 232Thby recovery corrected pre-concentration radiochemicalneutron activation analysis

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The determination of isotopic thorium by alpha spectrometric methods is a routine practice for bioassay and environmental measurement programs. Alpha-spectrometry has excellent detection limits (by mass) for all isotopes of thorium except 232Th due to its extremely long half-life. This paper discusses improvements in the detection limit and sensitivity over previously reported methods of pre-concentration neutron activation analysis (PCNAA) for the recovery corrected, isotopic determination of thorium in various matrices. Following irradiation, the samples weredissolved, 231Pa added as a tracer, and Pa isolated by two different methods and compared (extraction chromatography and anion exchange chromatography) followed by alpha spectrometry for recovery correction. Ion exchange chromatography was found to be superior for this application at this time, principally for reliability. The detection limit for 232Th of 3.5 · 10-7 Bq is almost three orders of magnitude lower than foralpha spectrometry using the PCRNAA method and one order of magnitude below previously reported PCNAA methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. E. Wrenn, N. P. Singh, N. Cohen, S. A. Ibrahim, G. Saccomanno, Thorium in Human Tissues, NUREG/CR-1227 US Nuclear Regulatory Commission, Washington, D.C., 1981.

    Google Scholar 

  2. Environmental Measurements Laboratory Procedures Manual: HASL-300, 27th ed., U.S. Dept. of Energy, New York, 1992.

  3. K. Kitamura, Y. Inazawa, T. Morimoto, K. Sato, H. Higuchi, K. Imai, K. Watari, J. Radioanal. Nucl. Chem., 217 (1997) 175.

    Google Scholar 

  4. R. J. Clifton, M. Farrow, E. L. Hamilton, Ann. Occ. Hyg., 14 (1971) 303.

    Google Scholar 

  5. C. M. Sunta, H. S. Dang, D. D. Jaiswal, J. Radioanal. Nucl. Chem., 1 (1987) 149.

    Google Scholar 

  6. H. F. Lucas, Jr., D. N. Edgington, F. Markun, Health Phys., 19 (1970) 739.

    PubMed  Google Scholar 

  7. D. N. Edgington, Intern. J. Appl. Radiation Isotopes, 18 (1967) 11.

    Google Scholar 

  8. M. Picer, P. Strohal, Anal. Chim. Acta, 40 (1968) 131.

    PubMed  Google Scholar 

  9. D. D. Jaiswal, H. S. Dang, C. M. Sunta, J. Radioanal. Nucl. Chem., 88 (1985) 225.

    Google Scholar 

  10. S. E. Glover, R. H. Filby, S. B. Clark, J. Radioanal. Nucl. Chem., 234 (1998) 213.

    Google Scholar 

  11. H. G. Petrow, C. D. Strehlow, Anal. Chem., 39 (1967) 265.

    PubMed  Google Scholar 

  12. J. S. Crain, L. L. Smith, J. S. Yaeger, J. A. Alvarodo, J. Radioanal. Nucl. Chem., 194 (1995) 133.

    Google Scholar 

  13. J. S. Crain, Spectroscopy, 11 (1996) 31.

    Google Scholar 

  14. J. S. Crain, B. L. Mikesell, Appl. Spectrosc., 46 (1992) 1498.

    Google Scholar 

  15. K. W. Terry, G. S. Hewson, G. Meuner, Health Phys., 68 (1995) 105.

    PubMed  Google Scholar 

  16. S. E. Glover, R. H. Filby, S. B. Clark, J. Radioanal. Nucl. Chem., 234 (1998) 201.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glover, S.E., Qu, H., LaMont, S.P. et al. Comparison of two ultra-sensitive methods for the determination of 232Thby recovery corrected pre-concentration radiochemicalneutron activation analysis. Journal of Radioanalytical and Nuclear Chemistry 248, 29–33 (2001). https://doi.org/10.1023/A:1010657503918

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010657503918

Keywords

Navigation