Skip to main content
Log in

Mitogenic Signaling and the Relationship to Cell Cycle Regulation in Astrocytomas

  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

The activity and regulation of a number of mitogenic signaling pathways is aberrant in astrocytomas, and this is thought to play a crucial role in the development of these tumors. The cascade of events leading to the formation and the progression from low-grade to high-grade astrocytomas is well characterized. These events include activating mutations, amplification, and overexpression of various growth factor receptors (e.g. epidermal growth factor receptor (EGFR), platelet derived growth factor receptor (PDGFR), c-Met), signaling intermediates (e.g. Ras and Protein kinase C (PKC)), and cell cycle regulatory molecules (e.g. mouse double minute-2 (Mdm2), cyclin-dependent kinase-4 (CDK4), and CDK6), that positively regulate proliferation and cell cycle progression. Inactivating mutations and deletions of signaling and cell cycle regulatory molecules that negatively regulate proliferation and cell cycle progression (e.g. p53, p16/INK4a, p14/ARF, p15/INK4b, retinoblastoma protein (Rb), and Phosphatase and tensin homologue deleted from chromosome 10 (PTEN)) also participate actively in the development of the transformed phenotype. Several mitogenic pathways are also stimulated via an autocrine loop, with astrocytoma cells expressing both the receptors and the respective cognate ligand. Due to the multitude of factors involved in astrocytoma pathogenesis, attempts to target a single pathway have not given satisfactory results. The simultaneous targeting of several pathways or the targeting of signaling intermediates, such as Ras or PKC, situated downstream of many growth factor receptor signaling pathways may show more efficacy in astrocytoma therapy. We will give an overview of how the combination of these aberrations drive astrocytoma cells into a relentless proliferation and how these signaling molecules may constitute relevant therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kleihues P, Soylemezoglu F, Schauble B, Scheithauer BW, Burger PC: Histopathology, classification, and grading of gliomas. Glia 15: 211–221, 1995

    Google Scholar 

  2. Von Deimling A, Louis DN, Wiestler OD: Molecular pathways in the formation of gliomas. Glia 15: 328–338, 1995

    Google Scholar 

  3. Lang FF, Miller DC, Koslow M, Newcomb EW: Pathways leading to glioblastoma multiforme: a molecular analysis of genetic alterations in 65 astrocytic tumors. J Neurosurg 81: 427–436, 1994

    Google Scholar 

  4. Biernat W, Tohma Y, Yonekawa Y, Kleihues P, Ohgaki H: Alterations of cell cycle regulatory genes in primary (de novo) and secondary glioblastomas. Acta Neuropathol 94: 303–309, 1997

    Google Scholar 

  5. Dirks PB, Rutka JT: Current concepts in neuro-oncology: The cell cycle, a review. Neurosurgery 40: 1000–1015, 1997

    Google Scholar 

  6. Sherr CJ: Tumor surveillance via the ARF-p53 pathway. Genes Dev 12: 2984–2991, 1998

    Google Scholar 

  7. Weinberg RA: The retinoblastoma protein and cell cycle control. Cell 81: 323–330, 1995

    Google Scholar 

  8. Ichimura K, Bondesson Bolin M, Goike HM, Schmidt EE, Moshref A, Collins VP: Deregulation of the p14-ARF/ MDM2/p53 pathway is a prerequisite for human astrocytic gliomas with G1/S transition control gene abnormalities. Cancer Res 60: 417–424, 2000

    Google Scholar 

  9. Collins VP: Gene amplification in human gliomas. Glia 15: 289–296, 1995

    Google Scholar 

  10. Reifenberger G, Liu L, Ichimura K, Schmidt EE, Collins VP: Amplification and overexpression of the Mdm2 gene in a subset of human malignant gliomas without p53 mutations. Cancer Res 53: 2736–2739, 1993

    Google Scholar 

  11. Schmidt EE, Ichimura K, Reifenberger G, Collins VP: CDKN2 (p16/MTS1) gene deletion or CDK4 amplification occurs in the majority of glioblastomas. Cancer Res 54: 6321–6324, 1994

    Google Scholar 

  12. He J, Olson JJ, James CD: Lack of p16INK4 or retinoblastoma protein (pRb), or amplification-associated overexpression of CDK4 is observed in distinct subsets of malignant glial tumors ad cell lines. Cancer Res 55: 4833–4836, 1995

    Google Scholar 

  13. Ichimura K, Schmidt EE, Goike HM, Collins VP: Human glioblastomas with no alterations of the CDK2A (p16/INK4A/MTS1) and CDK4 genes have frequent mutations of the retinoblastoma gene. Oncogene 13: 1065–1072, 1996

    Google Scholar 

  14. Burns KL, Ueki K, Jhung SL, Koh J, Louis DN: Molecular genetics correlates of p16, CDK4, and pRb immunochemistry in glioblastomas. J Neuropathol Exp Neurol 57: 122–130, 1998

    Google Scholar 

  15. Hackel PO, Zwick E, Prenzel N, Ullrich A: Epidermal growth factor receptors: critical mediators of multiple receptor pathways. Curr Op Cell Biol 11: 184–189, 1999

    Google Scholar 

  16. Libermann TA, Razon N, Bantal AD, Yarden Y, Schlessinger J, Soreq H: Expression of epidermal growth factor receptors in human brain tumors. Cancer Res 44: 753–760, 1984

    Google Scholar 

  17. Bigner SH, Burger PC, Wong AJ, Werner MH, Hamilton SR, Muhlbaier LH, Vogelstein B, Bigner DD: Gene amplification in malignant human gliomas: Clinical and histopathological aspects. J Neuropathol Exp Neurol 47: 191–205, 1988

    Google Scholar 

  18. Worm K, Dabbagh P, Schwechhmeimer K: Reverse transcriptase polymerase chain reaction as a reliable method to detect epidermal growth factor receptor exon 2–7 gene deletion in human glioblastomas. Hum Pathol 30: 222–227, 1999

    Google Scholar 

  19. Ekstrand AJ, James CD, Cavenee WK, Seliger B, Pettersson RF, Collins VP: Genes for epidermal growth factor receptor, transforming growth factor alpha, and epidermal growth factor and their expression in human gliomas in vivo. Cancer Res 51: 2164–2172, 1991

    Google Scholar 

  20. Wong AJ, Ruppert JM, Bigner SH, Grzeschik CH, Humphrey PA, Bigner DD, Vogelstein B: structural alterations of the epidermal growth factor receptor gene in human gliomas. Proc Natl Acad Sci USA 89: 2965–2969, 1992

    Google Scholar 

  21. Wikstrand CJ, Hale LP, Batra SK, Hill ML, Humphrey PA, Kurpad SN, McLendon RE, Moscatello D, Pegram CN, Reist CJ, Traweek ST, Wong AJ, Zalutski MR, Bigner DD: Monoclonal antibodies against EGFRvIII are tumor specific and react with breast and lung carcinomas and malignant gliomas. Cancer Res 55: 3140–3148, 1995

    Google Scholar 

  22. Huang HJS, Nagane M, Klingbeil CK, Lin H, Nishikawa R, Ji XD, Huang CM, Gill GN, Wiley HS, Cavenee WK: The enhanced tumorigenic activity of a mutant epidermal growth factor receptor common in human cancers is mediated by threshold levels of constitutive tyrosine phosphorylation and unattenuated signaling. J Biol Chem 272: 2927–2935, 1997

    Google Scholar 

  23. Ekstrand AJ, Longo N, Hamid ML, Olson JJ, Liu L, Collins VP, James CD: Functional characterization of an EGF receptor with a truncated extracellular domain expressed in glioblastomas with EGFR gene amplification. Oncogene 9: 2313–2320, 1994

    Google Scholar 

  24. Ekstrand AJ, Liu L, He L, Hamid ML, Longo N, Collins VP, James CD: Altered subcellular location of an activated and tumour associated epidermal growth factor receptor. Oncogene 10: 1455–1460, 1995

    Google Scholar 

  25. Nishikawa R, Ji XD, Harmon RC, Lazar CS, Gill GN, Cavenee WK, Huang HJS: Amutant epidermal growth factor receptor common in human glioma confers enhanced tumorigenicity. Proc Natl Acad Sci USA 91: 7727–7731, 1994

    Google Scholar 

  26. Nagane M, Coufal F, Lin H, Bogler O, Cavenee WK, Huang HJS: A common mutant epidermal growth factor receptor confers enhanced tumorigenicity on human glioblastoma cells by increasing proliferation and reducing apoptosis. Cancer Res 56: 5079–5086, 1996

    Google Scholar 

  27. Sugawa N, Yamamoto K, Ueda S, Morita N, Kita M, Nishino H, Fushiki S, Okabe T: Function of aberrant EGFR in malignant gliomas. Brain Tumor Pathol 15: 53–57, 1998

    Google Scholar 

  28. Nagane M, Levitzski A, Gazit A, Cavenee WK, Huang HJS: Drug resistance of human glioblastoma cells conferred by a tumor specific mutant epidermal growth factor receptor through modulation of Bcl-XL and caspase-3-like proteases. Proc Natl Acad Sci USA 95: 5724–5729, 1998

    Google Scholar 

  29. Prigent SA, Nagane M, Lin H, Huvar I, Boss GR, Feramisco JR, Cavenee WK, Huang HJS: Enhanced tumorigenic behavior of glioblastoma cells expressing a truncated epidermal growth factor receptor is mediated through the Ras-Shc-Grb2 pathway. J Biol Chem 271: 25639–25645, 1996

    Google Scholar 

  30. Montgomery RB, Moscatello DK, Wong AJ, Cooper JA, Stahl WL: Differential modulation of mitogen-activated protein (MAP) kinase/extracellular signal regulated kinase and MAP kinase activities by a mutant epidermal growth factor receptor. J Biol Chem 270: 30562–30566, 1995

    Google Scholar 

  31. Holland EC, Hively WP, DePinho RA, Varmus HE: A constitutively active epidermal growth factor receptor cooperates with disruption of G1 cell cycle arrest pathways to induce glioma like lesions in mice. Genes Dev 12: 3675–3685, 1998

    Google Scholar 

  32. Holland EC: A mouse model for glioma: Biology, pathology, and therapeutic opportunities. Toxicol Pathol 28: 171–177, 2000

    Google Scholar 

  33. Tang P, Steck PA, Yung WKA: The autocrine loop of TGF alpha/EGFR and brain tumors. J Neuro-Oncol 35: 303–314, 1997

    Google Scholar 

  34. Mishima K, Higashiyama S, Asai A, Yamaoka K, Nagashima Y, Taniguchi N, Kitanaka C, Kirino T, Kuchino Y: Heparin binding epidermal growth factor-like growth factor stimulates mitogenic signaling and is highly expressed in human malignant gliomas. Acta Neuropathol 96: 322–328, 1998

    Google Scholar 

  35. Maruno M, Kovach JS, Kelly PJ, Yanagihara T: Transforming growth factor-alpha, epidermal growth factor receptor, and proliferating potential in benign and malignant gliomas. J Neurosurg 75: 97–102, 1991

    Google Scholar 

  36. Nister M, Libermann TA, Betsholtz C, Pettersson M, Claesson-Welsh L, Heldin CH, Schlessinger J, Westermark B: Expression of messenger RNAs for platelet-derived growth factor and transforming growth factor-alpha and their receptors in human malignant glioma cell lines. Cancer Res 48: 3910–3918, 1988

    Google Scholar 

  37. Tang P, Jasser SA, Sung JC, Shi Y, Steck PA, Yung WK: Transforming growth factor-alpha antisense vectors can inhibit glioma cell growth. J Neuro-Oncol 43: 127–135, 1999

    Google Scholar 

  38. Hung MC, Lau YK: Basic science of HER-2/Neu: a review. Semin Oncol 26: 51–59, 1999

    Google Scholar 

  39. Stragliotto G, Vega F, Stasiecki P, Gropp P, Poisson M, Delattre JY: Multiple infusions of anti-epidermal growth factor receptor (EGFR) monoclonal antibody (EMD 55,900) in patients with recurrent malignant gliomas. Eur J Cancer 32: 636–640, 1996

    Google Scholar 

  40. Wersall P, Ohlsson I, Biberfeld P, Collins VP, Von Krusenstjerna S, Larsson S, Mellstedt H, Boethius J: Intratumoral infusion of the monoclonal antibody, mAb 425, against the epidermal-growth-factor receptor in patients with advanced malignant glioma. Cancer Immunol Immunother 44: 157–164, 1997

    Google Scholar 

  41. Tian XX, Lam PYP, Chen J, Pang JCS, To SST, Di-Tomaso E, Ng HK: Antisense epidermal growth factor receptor RNA transfection in human malignant glioma cells leads to inhibition of proliferation and induction of differentiation. Neuropathol Applied Neurobiol 24: 389–396, 1998

    Google Scholar 

  42. Yamazaki H, Kijima H, Ohnishi Y, Abe Y, Oshika Y, Tsuchida T, Tokunaka T, Tsugu A, Ueyama Y, Tamaoki N, Nakamura M: Inhibition of tumor growth by ribozymemediated suppression of aberrant epidermal growth factor receptor gene expression. J Natl Cancer Inst 90: 581–587, 1998

    Google Scholar 

  43. Halatsch ME, Schmidt U, Botefur IC, Holland JF, Ohnuma T: Marked inhibition of glioblastoma target cell tumorigenicity in vitro by retrovirus-mediated transfer of a hairpin ribozyme against deletion mutant epidermal growth factor receptor messenger RNA. J Neurosurg 92: 297–305, 2000

    Google Scholar 

  44. Rourke DMO, Qian X, Zhang HT, Davis JG, Nute E, Meinkoth J, Greene MI: Trans receptor inhibition of human glioblastoma cells by erbB family ectodomain. Proc Natl Acad Sci USA 94: 3250–3255

  45. Han Y, Gacusana Caday C, Nanda A, Cavenee WK, Huang HJS: Tyrphostin AG 1478 preferentially inhibits human glioma cells expressing truncated rather than wild type epidermal growth factor. Cancer Res 56: 3859–3861, 1996

    Google Scholar 

  46. Westermark B, Heldin CH, Nister M: Platelet-derived growth factor in human glioma. Glia 15: 257–263, 1995

    Google Scholar 

  47. Nister M, Claesson-Welsh L, Eriksson A, Heldin CH, Westermark B: Differential expression of platelet-derived growth factor receptors in human malignant cell lines. J Biol Chem 266: 16755–16763, 1991

    Google Scholar 

  48. Hermanson M, Funa K, Hartman M, Claesson-Welsh L, Heldin CH, Westermark B, Nister M: Platelet-derived growth factor (PDGF) and its receptors in human glioma tissue: expression of mRNA and protein suggests the presence of autocrine and paracrine loops. Cancer Res 52: 3213–3219, 1992

    Google Scholar 

  49. Fleming TP, Saxena A, Clark WC, Robertson JT, Oldfield EH, Aaronson SA, Ali IU: Amplification and/or overexpression of platelet-derived growth factor receptors and epidermal growth factor receptor in human glial tumors. Cancer Res 52: 4550–4553, 1992

    Google Scholar 

  50. Shamah SM, Stiles CD, Guha A: Dominant negative mutants of platelet-derived growth factor revert the transformed phenotype of human astrocytoma cells. Mol Cell Biol 13: 7203–7212, 1993

    Google Scholar 

  51. Strawn L, Mann E, Elliger SS, Chu LM, Germain LL, Neiderfellner G, Ullrich A, Shawver LK: Inhibition of glioma cell growth by a truncated platelet derived growth factor β receptor. J Biol Chem 269: 21215–21222, 1994

    Google Scholar 

  52. Vassbotn FS, Ostman A, Langeland N, Holmsen H, Westermark B, Heldin CH, Nister M: Evidence for an activated PDGF pathway which contributes to the transformed phenotype of A172 glioblastoma. J Cell Physiol 158: 381–389, 1994

    Google Scholar 

  53. Uhrbom L, Hesselager G, Nister M, Westermark B: Induction of brain tumors in mice using a recombinant platelet-derived growth factor B-chain retrovirus. Cancer Res 58: 5275–5279, 1998

    Google Scholar 

  54. Shawver LK, Schwartz DP, Mann E, Chen H, Tsai J, Chu L, Taylorson L, Longhi M, Meredith S, Germain L, Jacobs JS, Tang C, Ullrich A, Berens ME, Hersh E, McMahon G, Hirth KP, Powell TJ: Inhibition of platelet-derived growth factor-mediated signal transduction and tumor growth by N-[4-(trifluoromethyl)-phenyl]5-methylisoxazole-4-carboxamide. Clin Cancer Res 3: 1167–1177, 1997

    Google Scholar 

  55. Ahn HY, Hadizadeh KR, Seul C, Yun YP, Vetter H, Sachinidis A: Epigallocathechin-3 Gallate Selectively Inhibits the PDGF-BB-induced Intracellular Signaling Transduction Pathway in Vascular Smooth Muscle Cells and Inhibits Transformation of sis-transfected NIH 3T3 Fibroblasts and Human Glioblastoma Cells (A172). Mol Biol Cell 10: 1093–1104, 1999

    Google Scholar 

  56. Klint P, Claesson-Welsh L: Signal transduction by fibroblast growth factor receptors. Front Biosci 4: 165–177, 1999

    Google Scholar 

  57. Morrison RS, Yamaguchi F, Bruner JM, Tang M, McKeehan W, Berger MS: Fibroblast growth factor receptor gene expression and immunoreactivity are elevated in human glioblastoma multiforme. Cancer Res 54: 2794–2799, 1994

    Google Scholar 

  58. Ueba T, Takahashi JA, Fukumoto M, Ohta M, Ito N, Oda Y, Kikuchi H, Hatanaka M: Expression of fibroblast growth factor receptor-1 in human glioma and meningioma tissues. Neurosurgery 34: 221–225, 1994

    Google Scholar 

  59. Yamaguchi F, Saya H, Bruner JM, Morrison RS: Differential expression of two fibroblast growth factor-receptor genes is associated with malignant progression in human astrocytomas. Proc Natl Acad Sci USA 91: 484–488, 1994

    Google Scholar 

  60. Morrison RS, Yamaguchi F, Saya H, Bruner JM, Yahanda AM, Donehower LA, Berger M: Basic fibroblast growth factor and fibroblast growth factor receptor I are implicated in the growth of human astrocytomas. J Neuro Oncol 18: 207–216, 1994

    Google Scholar 

  61. Bredel M, Pollack IF, Campbell JW, Hamilton RL: Basic fibroblast growth factor expression as a predictor of prognosis in pediatric high-grade gliomas. Clin Cancer Res 3: 157–164, 1997

    Google Scholar 

  62. Yamada SM, Yamaguchi F, Brown R, Berger MS, Morrison RS: Suppression of glioblastoma cell growth following antisense oligonucleotide-mediated inhibition of fibroblast growth factor receptor expression. Glia 28: 66–76, 1999

    Google Scholar 

  63. Segal DH, Germano IM, Bederson JB: Effects of basic fibroblast growth factor on in vivo cerebral tumorigenesis in rats. Neurosurgery 40: 1027–1033, 1997

    Google Scholar 

  64. Holland EC, Varmus HE: Basic fibroblast growth factor induces cell migration and proliferation after glia-specific gene transfer in mice. Proc Natl Acad Sci USA 95: 1218–1223, 1998

    Google Scholar 

  65. Ueba T, Kaspar B, Zhao X, Gage FH: Repression of human fibroblast growth factor 2 by a novel transcription factor. J Biol Chem 274: 10382–10387, 1999

    Google Scholar 

  66. Murai N, Ueba T, Takahashi JA, Yang HQ, Kikuchi H, Hiai H, Hatanaka M, Fukumoto M: Apoptosis of human glioma cells in vitro and in vivo induced by a neutralizing antibody against human basic fibroblast growth factor. J Neurosurg 85: 1072–1077, 1996

    Google Scholar 

  67. Moriyama T, Kataoka H, Hamasuna R, Yokogami K, Uehara H, Kawano H, Goya T, Tsubouchi H, Koono M, Wakisaka S: Up-regulation of vascular endothelial growth factor induced by hepatocyte growth factor stimulation in human glioma cells. Biochem Biophys Res Commun 249: 73–77, 1998

    Google Scholar 

  68. Nabeshima K, Shimao Y, Sato S, Kataoka H, Moriyama T, Kawano H, Wakisaka S, Koono M: Expression of c-Met correlates with grade of malignancy in human astrocytic tumors: an immunohistochemical study. Histopathol 31: 436–443, 1997

    Google Scholar 

  69. Moriyama T, Kataoka H, Kawano H, Yokogami K, Nakano S, Goya T, Uchino H, Koono M, Wakisaka S: Comparative analysis of expression of hepatocyte growth factor and its receptor, c-met, in gliomas, meningiomas and schwannomas in human. Cancer Lett 124: 149–155, 1998

    Google Scholar 

  70. Koochekpour S, Jeffers M, Rulong S, Taylor G, Klineberg E, Hudson EA, Resau JH, Vande Woude GF: Met and hepatocyte growth factor expression in human gliomas. Cancer Res 57: 5391–5398, 1997

    Google Scholar 

  71. Laterra J, Rosen E, Nam M, Ranganathan S, Fielding K, Johnston P: Scatter factor/hepatocyte growth factor expression enhances human glioblastoma tumorigenicity and growth. Biochem Biophys Res Commun 235: 743–747, 1997

    Google Scholar 

  72. Abounader R, Ranganathan S, Lal B, Fielding K, Book A, Dietz H, Burger P, Laterra J: Reversion of human glioblastoma malignancy by U1 small nuclear RNA/ribozyme targeting of scatter factor/hepatocyte growth factor and c-met expression. J Natl Cancer Inst 91: 1548–1556, 1999

    Google Scholar 

  73. Tada M, Diserens AC, Desbaillets I, De Tribolet N: Analysis of cytokine receptor messenger RNA expression in human glioblastoma cells and normal astrocytes by reverse-transcription polymerase chain reaction. J Neurosurg 80: 1063–1073, 1994

    Google Scholar 

  74. Kristt DA, Reedy E, Yarden Y: Receptor tyrosine kinase expression in astrocytic lesions: similar features in gliosis and glioma. Neurosurgery 33: 106–115, 1993

    Google Scholar 

  75. Berdel WE, De Vos S, Maurer J, Oberberg D, Von Marschall Z, Schroeder JK, Li J, Ludwig WD, Kreuser ED, Thiel E, Herrmann F: Recombinant human stem cell factor stimulates growth of a human glioblastoma cell line expressing c-kit protooncogene. Cancer Res 52: 3498–3502, 1992

    Google Scholar 

  76. Stanulla M, Welte K, Hadam MR, Pietsch T: Co-expression of stem cell factor and its receptor c-kit in human malignant glioma cell lines. Acta Neuropathol 89: 158–165, 1995

    Google Scholar 

  77. Giancotti FG, Ruoslahti E: Integrin signaling. Science 285: 1028–1032, 1999

    Google Scholar 

  78. Schwartz MA: Integrins, oncogenes, and anchorage independence. J Cell Biol 139: 575–578, 1997

    Google Scholar 

  79. Zhu X, Assoian RK: Integrin-dependent activation of MAP kinase: a link to shape-dependent cell proliferation. Mol Biol Cell 6: 273–282, 1995

    Google Scholar 

  80. Schlaepfer DD, Hunter T: Focal adhesion kinase overexpression enhances Ras-dependent integrin signaling to ERK2/mitogen activated protein kinase through interaction with and activation of c-Src. J Biol Chem 272: 13189–13195, 1997

    Google Scholar 

  81. Zhao JH, Reiske H, Guan JL: Regulation of the cell cycle by focal adhesion kinase. J Cell Biol 143: 1997–2000, 1998

    Google Scholar 

  82. Oktay M, Wary KK, Dans M, Birge RB, Giancotti FG: Integrin-mediated activation of focal adhesion kinase is required for signaling to Jun NH2-terminal kinase and progression through the G1 phase of the cell cycle. J Cell Biol 145: 1461–1469, 1999

    Google Scholar 

  83. Uhm JH, Gladson CL, Rao JS: The role of integrins in the malignant phenotype of gliomas. Front Biosci 4: 188–199, 1999

    Google Scholar 

  84. Besson A, Robbins SM, Yong VW: PTEN/MMAC1/TEP1 in signal transduction and tumorigenesis. Eur J Biochem 263: 605–611, 1999

    Google Scholar 

  85. Wang SI, Puc J, Li J, Bruce JN, Cairns P, Sidranski D, Parsons R: Somatic mutations of PTEN in glioblastoma multiforme. Cancer Res 57: 4183–4186, 1997

    Google Scholar 

  86. Bostrom J, Cobbers JMJL, Wolter M, Tabatabai G, Weber RG, Lichter P, Collins VP, Reifenberger G: Mutations of the PTEN/MMAC1 tumor suppressor gene in a subset of glioblastomas but not in meningiomas with loss of chromosome 10q. Cancer Res 58: 29–33, 1998

    Google Scholar 

  87. Liu W, James CD, Frederick L, Alderete BE, Jenkins RB: PTEN/MMAC1 mutations and EGFR amplification in glioblastomas. Cancer Res 57: 4997–5000, 1997

    Google Scholar 

  88. Tohma Y, Gratas C, Biernat W, Peraud A, Fukuda M, Yonekawa Y, Kleihues P, Ohgaki H: PTEN/MMAC1 mutations are frequent in primary glioblastomas (de novo) but not in secondary glioblastomas. J Neuropathol Exp Neurol 57: 684–689, 1998

    Google Scholar 

  89. Wayne I, Johnson DE, Vaillancourt MT, Avanzini J, Morimoto A, Demers GW, Wills KN, Shabram PW, Bolen JB, Tavtigian SV, Bookstein R: Suppression of tumorigenicity of glioblastoma cells by adenovirus mediated MMAC1/PTEN gene transfer. Cancer Res 58: 2331–2334, 1998

    Google Scholar 

  90. Furnari FB, Lin H, Huang HJS, Cavenee WK: Growth suppression of glioma cells by PTEN requires a functional phosphatase activity. Proc Natl Acad Sci USA 94: 12479–12484, 1997

    Google Scholar 

  91. Tamura M, Gu J, Matsumoto K, Aota S, Parsons R, Yamada KM: Inhibition of cell migration, spreading, and focal adhesions by tumor suppressor PTEN. Science 280: 1614–1617, 1998

    Google Scholar 

  92. Tamura M, Gu J, Takino T, Yamada KM: Tumor suppressor PTEN inhibition of cell invasion, migration, and growth: differential involvement of focal adhesion kinase and p130Cas. Cancer Res 59: 442–449, 1999

    Google Scholar 

  93. Gu J, Masahito T, Yamada KM: Tumor suppressor PTEN inhibits integrin and growth factor mediated mitogen activated protein (MAP) kinase signaling pathways. J Cell Biol 143: 1375–1383, 1998

    Google Scholar 

  94. Gu J, Tamura M, Pankov R, Danen EH, Takino T, Matsumoto K, Yamada KM: Shc and FAK differentially regulate cell motility and directionality modulated by PTEN. J Cell Biol 146: 389–403, 1999

    Google Scholar 

  95. Davies MA, Lu Y, Sano T, Fang X, Tang P, LaPushin R, Koul D, Bookstein R, Stokoe D, Yung WKA, Mills GB, Steck PA: Adenoviral transgene expression of MMAC/PTEN in human glioma cells inhibits Akt activation and induces anoikis. Cancer Res 58: 5285–5290, 1998

    Google Scholar 

  96. Rodrigues GA, Falasca M, Zhang Z, Ong SH, Schlessinger J: A novel positive feedback loop mediated by the docking protein Gab1 and phosphatidylinositol 3-kinase in epidermal growth factor receptor signaling. Mol Cell Biol 20: 1448–1459, 2000

    Google Scholar 

  97. Li DM, Sun H: PTEN/MMAC1/TEP1 suppresses the tumorigenicity and induces G1 cell cycle arrest in human glioblastoma cells. Proc Natl Acad Sci USA 95: 15406–15411, 1998

    Google Scholar 

  98. Furnari FB, Huang HJS, Cavenee WK: The phosphoinositol phosphatase activity of PTEN mediates a serum sensitive G1 growth arrest in glioma cells. Cancer Res 58: 5002–5008, 1998

    Google Scholar 

  99. Delcommenne M, Tan C, Gray V, Rue L, Woodgett J, Dedhar S: Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase 3 and protein kinase B/Akt by the integrin linked kinase. Proc Natl Acad Sci USA 95: 11211–11216, 1998

    Google Scholar 

  100. Haas-Kogan D, Shalev N, Wong M, Mills G, Yount G, Stokoe D: Protein kinase B (PKB/Akt) activity is elevated in glioblastoma cells due to mutation of the tumor suppressor PTEN/MMAC. Curr Biol 8: 1195–1198, 1998

    Google Scholar 

  101. Morimoto AM, Tomlinson MG, Nakatani K, Bolen JB, Roth RA, Herbst R: The MMAC1 tumor suppressor phosphatase inhibits phospholipase C and integrin linked kinase activity. Oncogene 19: 200–209, 2000

    Google Scholar 

  102. Paramio JM, Navarro M, Segrelles C, Gomez-Casero E, Jorcano JL: PTEN tumor suppressor is linked to the cell cycle control through the retinoblastoma protein. Oncogene 18: 7462–7468, 1999

    Google Scholar 

  103. Westwick JK, Lambert QT, Clark GJ, Symons M, Van AL, Pestell RG, Der CJ: Rac regulation of transformation, gene expression, and actin organization by multiple, PAK-independent pathways. Mol Cell Biol 17: 1324–1335, 1997

    Google Scholar 

  104. Gille H, Downward J: Multiple Ras effector pathways contribute to G1 cell cycle. J Biol Chem 274: 22033–22040, 1999

    Google Scholar 

  105. Gjoerup O, Lukas J, Bartek J, Willumsen BM: Rac and Cdc42 are potent stimulators of E2F-dependent transcription capable of promoting retinoblastoma susceptibility gene product hyperphosphorylation. J Biol Chem 273: 18812–18818, 1997

    Google Scholar 

  106. Diehl JA, Cheng M, Roussel MF, Sherr CJ: Glycogen synthase kinase 3 β regulates cyclin D1 proteolysis and subcellular localization. Genes Dev 12: 3499–3511, 1998

    Google Scholar 

  107. Muise-Helmericks RC, Grimes HL, Bellacosa A, Malstrom SE, Tsichlis PN, Rosen N: Cyclin D expression is controlled post-transcriptionally via a phosphatidylinositol 3-Kinase/Akt-dependent pathway. J Biol Chem 273: 29864–29872, 1998

    Google Scholar 

  108. Marshall C: How do small GTPase signal transduction pathways regulate cell cycle entry. Curr Op Cell Biol 11: 732–736, 1999

    Google Scholar 

  109. Khosravi-Far R, Campbell S, Rossman KL, Der CJ: Increasing complexity of Ras signal transduction: involvement of Rho family proteins. Adv Cancer Res 72: 57–107, 1998

    Google Scholar 

  110. Minden A, Lin A, McMahon M, Lange-Carter C, Derijard B, Davis RJ, Johnson GL, Karin M: Differential activation of ERK and JNK mitogen activated protein kinases by Raf-1 and MEKK. Science 266: 1719–1723, 1994

    Google Scholar 

  111. Feldkamp MM, Lala P, Lau N, Roncarci L, Guha A: Expression of activated epidermal growth factor receptors, ras-guanosine triphosphate, and mitogen activated protein kinase in human glioblastoma multiforme specimens. Neurosurgery 45: 1442–1453, 1999

    Google Scholar 

  112. Guha A, Feldkamp MM, Lau N, Boss G, Pawson A: Proliferation of human malignant astrocytomas is dependent on ras activation. Oncogene 15: 2755–2765, 1997

    Google Scholar 

  113. Feldkamp MM, Lau N, Guha A: Growth inhibition of astrocytoma cells by farnesyl transferase inhibitors is mediated by a combination of anti-proliferative, pro-apoptotic and anti-angiogenic effects. Oncogene 18: 7514–7526, 1999

    Google Scholar 

  114. Zujewski J, Horak ID, Bol CJ, Woestenborghs R, Bowden C, End DW, Piotrovsky VK, Chiao J, Belly RT, Todd A, Kopp WC, Kohler DR, Chow C, Noone M, Hakim FT, Larkin G, Gress RE, Nussenblatt RB, Kremer AB, Cowan KH: Phase I and Pharmacokinetic Study of Farnesyl Protein Transferase Inhibitor R115777 in Advanced Cancer. J Clin Oncol 18: 927, 2000

    Google Scholar 

  115. Barrington RE, Subler MA, Rands E, Omer CA, Miller PJ, Hundley JE, Koester SK, Troyer DA, Bearss DJ, Conner MW, Gibbs JB, Hamilton K, Koblan KS, Mosser SD, O'Neill TJ, Schaber MD, Senderak ET, Windle JJ, Oliff A, Kohl NE: A farnesyltransferase inhibitor induces tumor regression in transgenic mice harboring multiple oncogenic mutations by mediating alterations in both cell cycle control and apoptosis. Mol Cell Biol 18: 85–92, 1998

    Google Scholar 

  116. Lebowitz PF, Davide JP, Prendergast GC: Evidence that farnesyltransferase inhibitors suppress Ras transformation by interfering with Rho activity. Mol Cell Biol 15: 6613–6622, 1995

    Google Scholar 

  117. Coffey MC, Strong JE, Forsyth PA, Lee PWK: Reovirus therapy of tumors with activated ras pathway. Science 282: 1332–1334, 1998

    Google Scholar 

  118. Jaken S. Protein kinase C isozymes and substrates. Curr Op Cell Biol 8: 168–173, 1996

    Google Scholar 

  119. Kolch W, Heldecker G, Kochs G, Hummel R, Vahidi H, Mischak H, Finkenzeller G, Marme D, Rapp UR: Protein kinase Cα activates Raf-1 by direct phosphorylation. Nature 364: 249–252, 1993

    Google Scholar 

  120. Marais R, Light Y, Mason C, Paterson H, Olson MF, Marshall CJ: Requirement of Ras-GTP-Raf complexes for activation of Raf-1 by protein kinase C. Science 280: 109–112, 1998

    Google Scholar 

  121. Bredel M, Pollack IF: The role of protein kinase C (PKC) in the evolution and proliferation of malignant gliomas, and the application of PKC inhibition as a novel approach to anti-glioma therapy. Acta Neurochir 139: 1000–1013, 1997

    Google Scholar 

  122. Baltuch GH, Dooley NP, Villemure JG, Yong VW: Protein kinase C and growth regulation of malignant gliomas. Can J Neurol Sci 22: 264–271, 1995

    Google Scholar 

  123. Lund KA, Lazar CS, Chen WS, Walsh BJ, Welsh JB, Herbst JJ, Walton GM, Rosenfeld MG, Gill GN, Wiley HS: Phosphorylation of the epidermal growth factor receptor at threonine 654 inhibits ligand-induced internalization and down-regulation. J Biol Chem 265: 20517–20523, 1990

    Google Scholar 

  124. Jimenez-deAsua L, Goin M: Prostaglandin F2 alpha decreases the affinity of epidermal growth factor receptors in Swiss mouse 3T3 cells via protein kinase C activation. FEBS Lett 299: 235–238, 1992

    Google Scholar 

  125. Morrison P, Saltiel AR, Rich Rosner M: Role of mitogenactivated protein kinase in regulation of the epidermal growth factor receptor by protein kinase C. J Biol Chem 271: 12891–12896, 1996

    Google Scholar 

  126. Gulliford T, Ouyang X, Epstein RJ: Intensification of growth factor receptor signaling by phorbol treatment of ligand-primed cells implies a dimer-stabilizing effect of protein kinase C-dependent juxtamembrane domain phosphorylation. Cell Signal 11: 245–252, 1999

    Google Scholar 

  127. Mishra-Press A, Fields AP, Samols D, Goldthwait DA: Protein kinase C isoforms in glioblastoma cells. Glia 6: 188–197, 1992

    Google Scholar 

  128. Xiao H, Goldthwait DA, Mapstone T: The identification of four protein kinase C isoforms in human glioblastoma cell lines: PKC alpha, gamma, epsilon, and zeta. J Neurosurg 81: 734–740, 1994

    Google Scholar 

  129. Couldwell WT, Uhm JH, Antel JP, Yong VW: Enhanced protein kinase C activity correlates with the growth rate of malignant gliomas in vitro. Neurosurgery 29: 880–887, 1991

    Google Scholar 

  130. Couldwell WT, Antel JP, Yong VW: Protein kinase C activity correlates with the growth rate of malignant gliomas: part II. Effects of glioma mitogens and modulators of protein kinase C. Neurosurgery 31: 717–724, 1992

    Google Scholar 

  131. Baltuch GH, Yong VW: Signal transduction for proliferation of glioma cells in vitro occurs predominantly through a protein kinase C-mediated pathway. Brain Res 710: 143–149, 1996

    Google Scholar 

  132. Begemann M, Kashimawo SA, Choi YJA, Kim S, Christiansen KM, Duigou G, Mueller M, Schieren I, Ghosh S, Fabbro D, Lampen NM, Heitjan DF, Schiff PB, Bruce JN, Weinstein IB: Inhibition of the growth of glioblastomas by CGP41251, an inhibitor of protein kinase C, and by a phorbol ester tumor promoter. Clin Cancer Res 2: 1017–1030, 1996

    Google Scholar 

  133. Begemann M, Kashimawo SA, Heitjan DF, Schiff PB, Bruce JN, Weinstein IB: Treatment of human glioblastoma cells with the staurosporine derivative CGP 41251 inhibits CDC2 and CDK2 kinase activity and increases radiation sensitivity. Anticancer Res 18: 2275–2282, 1998

    Google Scholar 

  134. Begemann M, Kashimawo SA, Lunn RM, Delohery T, Choi YJA, Kim S, Heitjan DF, Santella RM, Schiff PB, Bruce JN, Weinstein IB: Growth inhibition induced by Ro 31–8220 and calphostin C in human glioblastoma cell lines is associated with apoptosis and inhibition of CDC2 kinase. Anticancer Res 18: 3139–3152, 1998

    Google Scholar 

  135. Ahmad S, Mineta T, Martuza RL, Glazer RI: Antisense expression of protein kinase C alpha inhibits the growth and tumorigenicity of human glioblastoma cells. Neurosurgery 35: 904–909, 1994

    Google Scholar 

  136. Yazaki T, Ahmad S, Chahlavi A, Zylber-Katz E, Dean NM, Rabkin SD, Martuza RL, Glazer RI: Treatment of glioblastoma U87 by systemic administration of an antisense protein kinase C alpha phosphorothioate oligonucleotide. Mol Pharmacol 50: 236–242, 1996

    Google Scholar 

  137. Sioud M, Sorensen DR: Anuclease-resistant protein kinase C α ribozyme blocks glioma cell growth. Nature Biotech 16: 556–561, 1998

    Google Scholar 

  138. Leirdal M, Sioud M: Ribozyme inhibition of the protein kinase C α triggers apoptosis in glioma cells. Br J Cancer 80: 1558–1564, 1999

    Google Scholar 

  139. Shih SC, Mullen A, Abrams K, Mukhopadhyay D, Claffey KP: Role of protein kinase C isoforms in phorbol ester-induced vascular endothelial growth factor expression in human glioblastoma cells. J Biol Chem 274: 15407–15414, 1999

    Google Scholar 

  140. Wellner M, Maasch C, Kupprion C, Lindschau C, Luft FC, Haller H: The proliferative effect of vascular endothelial growth factor requires protein kinase C-α and protein kinase C-ζ. Arterioscler Thromb Vasc Biol 19: 178–185, 1999

    Google Scholar 

  141. Besson A, Yong VW: Involvement of p21/Waf1/Cip1 in protein kinase C alpha-induced cell cycle progression. Mol Cell Biol 20: 4580–4590, 2000

    Google Scholar 

  142. LaBaer J, Garrett MD, Stevenson LF, Slingerland JM, Sandhu C, Chou HS, Fattaey A, Harlow E: New functional activities for the p21 family of CDK inhibitors. Genes Dev 11: 847–862, 1997

    Google Scholar 

  143. Cheng M, Olivier P, Diehl JA, Fero M, Roussel MF, Roberts JM, Sherr CJ: The p21(Cip1) and p27(Kip1) CDK ‘inhibitors’ are essential activators of cyclin D-dependent kinases in murine fibroblasts. EMBO J 18: 1571–1583, 1999

    Google Scholar 

  144. Jung JM, Bruner JM, Ruan S, Langford LA, Kyristis AP, Kobayashi T, Levin VA, Zhang W: Increased levels of p21/Waf1/Cip1 in human brain tumors. Oncogene 11: 2021–2028, 1995

    Google Scholar 

  145. Korkolopoulou P, Kouzelis K, Christodoulou P, Papanikolaou A, Thomas-Tsagli E: Expression of retinoblastoma gene product and p21/Waf1/Cip1 protein in gliomas: correlation with proliferation markers, p53 expression and survival. Acta Neuropathol 95: 617–624, 1998

    Google Scholar 

  146. Couldwell WT, Hinton DR, Surnock AA, DeGiorgio CM, Weiner LP, Apuzzo MLJ, Masri L, Law RE, Weiss MH: Treatment of recurrent malignant gliomas with chronic oral high-dose tamoxifen. Clin Cancer Res 2: 619–622, 1996

    Google Scholar 

  147. Mastronardi L, Puzzilli F, Couldwell WT, Osman Farah J, Lunardi P: Tamoxifen and carboplatin combinational treatment of high-grade gliomas. J Neuro-Oncol 38: 59–68

  148. Grossman SA, Alavi K, Carson K, Priet R, Dorr A, Holmlund J: The efficacy of an antisense oligonucleotide directed against protein kinase C alpha (ISIS 3521) delivered as a 21-day continuous intravenous infusion in patients with recurrent high-grade astrocytomas. Abstract #84 for the Society of Neuro-oncology 1999. Neuro-Oncology 1: 313, 1999

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Besson, A., Wee Yong, V. Mitogenic Signaling and the Relationship to Cell Cycle Regulation in Astrocytomas. J Neurooncol 51, 245–264 (2001). https://doi.org/10.1023/A:1010657030494

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010657030494

Navigation