Skip to main content
Log in

Ultrasonic 2D SH Crack Detection in a Layered Anisotropic Plate

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

The 2-D scattering problem of an internal crack in a layered anisotropic plate is considered in this paper. In the model, two ultrasonic SH probes are attached on the upper surface of the plate and the incoming displacement field is generated by one of the probes and the other probe is acting as a receiver. The transmitting and the receiving probe may be the same. The problem is solved by deriving the Green function for the layered plate and then using the integral representation for the total field to obtain an integral equation for the crack opening displacement. The integral equation is solved by expanding the crack opening displacement (COD) in Chebyshev functions. A crucial part of the method is the expansion of the Green function in a free space part, expressed in the crack coordinate system, and a reflection part, expressed in the plate coordinate system. The electrical signal response is calculated by an electromechanical reciprocity relation. Numerical examples are given for a transversally isotropic graphite-epoxy plate, where the symmetry axes are mutually perpendicular in the layers. The results are presented as A-scans, i.e. the electrical response as a function of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. B. A. Auld, General electromechanical reciprocity relations applied to the calculation of elastic wave scattering coefficients, Wave motion 1:3-10 (1979).

    Google Scholar 

  2. —, Acoustic fields and waves in solids, vol. 1, Krieger, Malabar, Florida, 1990.

    Google Scholar 

  3. A. Boström, Elasic wave scattering from an interface crack: Anti-plane strain, J. Appl. Mech. 54:503-508 (1987).

    Google Scholar 

  4. A. Boström and H. Wirdelius, Ultrasonic probe modeling and nondestructive crack detection, J. Acoust. Soc. Am. 97:2836-2848 (1995).

    Google Scholar 

  5. P. Bövik and A. Boström, A model of ultrasonic nondestructive testing for internal and subsurface cracks, J. Acoust. Soc. Am. 102:2723-2733 (1997).

    Google Scholar 

  6. A. S. Eriksson, J. Mattsson, and A. J. Niklasson, Modeling of ultrasonic crack detection in anisotropic materials, NDT&E International 33:441-451 (2000).

    Google Scholar 

  7. K. M. A. Jaleel, N. N. Kishore, and V. Sundararajan, Finite-element simulation of elastic wave propagation in orthotropic composite materials, Materials Evaluation 830-838 (1993).

  8. G. R. Liu and J. D. Achenbach, Strip element method to analyze wave scattering by cracks in anisotropic laminated plates, J. Appl. Mech. 62:607-613 (1995).

    Google Scholar 

  9. A. K. Mal, C.-C. Yin, and Y. Bar-Cohen, Analysis of acoustic pulses from fiber-reinforced composite laminates, J. Appl. Mech. 59:S136-S144 (1992).

    Google Scholar 

  10. J. Mattsson and A. J. Niklasson, Ultrasonic 2-D SH crack detection in anisotropic solids, J. of Nondestr. Eval. 16(1):31-41 (1997).

    Google Scholar 

  11. J. Mattsson, A. J. Niklasson, and A. S. Eriksson, 3D ultrasonic crack detection in anisotropic materials, Res Nondestr Eval 9:59-79 (1997).

    Google Scholar 

  12. A. H. Nayfeh, Wave propagation in layered anisotropic media with applications to composites, Applied Mathematics and Mechanics, vol. 39, North-Holland, Amsterdam, 1995.

    Google Scholar 

  13. A. J. Niklasson, Ultrasonic 2-D SH probe modeling in anisotropic solids, J. Acoust. Soc. Am. 100:2132-2138 (1996).

    Google Scholar 

  14. —, Ultrasonic three-dimensional probe modeling in anisotropic solids, J. Acoust. Soc. Am. 103:2432-2442 (1998).

    Google Scholar 

  15. Y.-H. Pao and V. Varatharajulu, Huygens' principle, radiation conditions, and integral formulas for the scattering of elastic waves, J. Acoust. Soc. Am. 59:1361-1371 (1976).

    Google Scholar 

  16. L. W. Schmerr and A. Sedov, An elastodynamic model for compressional and shear wave transducers, J. Acoust. Soc. Am. 86:1988-2006 (1989).

    Google Scholar 

  17. S. Ström, Introduction to integral representations and integral equations for time-harmonic acoustic, electromagnetic and elastodynamic wave fields, North-Holland, Amsterdam, 1991.

    Google Scholar 

  18. P. M. van den Berg, Transition matrix in acoustic scattering by a strip, J. Acoust. Soc. Am. 70:615-619 (1981).

    Google Scholar 

  19. J. H. M. T. van der Hijden, Propagation of transient elastic waves in stratified anisotropic media, Applied Mathematics and Mechanics, vol. 32, North-Holland, Amsterdam, 1987.

    Google Scholar 

  20. Ch. Zhang, Transient elastodynamic antiplane crack analysis of anisotropic solids, Int. J. Solids Structures 37:6107-6130 (2000).

    Google Scholar 

  21. J. Zhu, A. H. Shah, and S. K. Datta, Transient response of a composite plate with delamination, J. Appl. Mech. 65:664-670 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grahn, T. Ultrasonic 2D SH Crack Detection in a Layered Anisotropic Plate. Journal of Nondestructive Evaluation 20, 17–28 (2001). https://doi.org/10.1023/A:1010649713130

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010649713130

Navigation