Skip to main content
Log in

Expression and activity of cell-wall-degrading enzymes in the latex of opium poppy, Papaver somniferum L.

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The alkaloid-rich latex of the opium poppy, Papaver somniferum L., is valued as a source of pharmaceuticals including thebaine, codeine, and morphine, but is also harvested for heroin production. The poppy laticifer system develops through the gradual disappearance of the common walls between differentiating laticifer elements throughout the plant. Gene homologues for cell-wall-degrading enzymes were found during random sequencing of an opium poppy latex cDNA library. RNA gel blot analysis of cellulase, polygalacturonase β-subunit, 1,3-β-glucanase, and xyloglucan endotransglycosylase homologues showed their expression was not limited to laticifers. In contrast, poppy gene homologues to pectin methylesterase (PME), pectin acetylesterase (PAE) and pectate lyase (PL) where all highly expressed and latex-specific. Enzyme assays confirmed the presence of PME, PAE, and PL activities in latex serum. The abundance of transcripts encoding pectin-degrading enzymes in latex suggests that these enzymes may play an important role in laticifer development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J. 1997. Gapped BLAST and PSI-BLAST: a new generatioin of protein database search programs. Nucl. Acids Res. 25: 3389–3402.

    Google Scholar 

  • Bordenave, M., Goldberg, R., Huet, J.C. and Pernollet, J.C. 1995. A novel protein from mung bean hypocotyl cell walls with acetyl esterase activity. Phytochemistry. 38: 315–319.

    Google Scholar 

  • Breton, C., Bordenave, M., Richard, L., Pernollet, J.C., Huet, J.C., Pérez, S. and Goldberg, R. 1996. PCR cloning and expression analysis of a cDNA encoding a pectin acetylesterase from Vigna radiata L. FEBS Lett. 388: 139–142.

    Google Scholar 

  • Bryant, R.J. 1988. The manufacture of medicinal alkaloids from the opium poppy: a review of a traditional biotechnology. Chem. Ind. 5: 146–153.

    Google Scholar 

  • Burns, J.K. 1991. The polygalacturonases and lyases. In: R.H. Walter (Ed.) The Chemistry and Technology of Pectin, Academic Press, San Diego, CA, pp. 165–168.

    Google Scholar 

  • Carpita, N.C. and Gibeaut, D.M. 1993. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J. 3: 1–30.

    Google Scholar 

  • Chye, M.L. and Cheung, K.Y. 1995. β-1,3-glucanase is highly ex-pressed in laticifers of Hevea brasiliensis. Plant Mol. Biol. 29: 397–402.

    Google Scholar 

  • Clarke, A.E. and Stone, B.A. 1962. β-1,3-glucan hydrolases from the grape vine (Vitis vinifera) and other plants. Phytochemistry 1: 175–188.

    Google Scholar 

  • Collmer, A., Ried, J.L and Mount, M.S. 1988. Assay methods for pectic enzymes. Meth. Enzymol. 161: 329–335.

    Google Scholar 

  • del Campillo, E. and Lewis, L.N. 1992. Occurrence of 9.5 cellulase and other hydrolases in flower reproductive organs undergoing major cell wall disruption. Plant Physiol. 99: 1015–1020.

    Google Scholar 

  • Delp, G. and Palva, E.T. 1999. A novel flower-specific Arabidopsis gene related to both pathogen-induced and developmentally regulated plant β-1,3-glucanase genes. Plant Mol. Biol. 39: 565–575.

    Google Scholar 

  • Domínguez-Puigjaner, E., Llop, I., Vendrell, M. and Prat, S. 1997. A cDNA clone highly expressed in ripe banana fruit shows homology to pectate lyases. Plant Physiol. 114:1071–1076.

    Google Scholar 

  • Ebbelaar, M.E.M., Tucker, G.A., Laats, M.M., van Dijk, C., Stolle-Smits, T. and Recourt, K. 1996. Characterization of pectinases and pectin methylesterase cDNAs in pods of green beans (Phaseolus vulgaris L.). Plant Mol. Biol. 31: 1141–1151.

    Google Scholar 

  • Esau, K. 1965. Plant Anatomy, 2nd ed. John Wiley, New York.

    Google Scholar 

  • Eschrich, W. 1959. Zum enzymatischen Kalloseabbeau mit Papain. Naturwissenschaften 46: 327–328.

    Google Scholar 

  • Fahn, A. 1990. Plant Anatomy, 4th ed. Pergamon Press, Oxford, UK.

    Google Scholar 

  • Fanutti, C., Gidley, M.J. and Reid, J.S.G. 1993. Action of a pure xyloglucan endotransglycosylase (formerly called xyloglucan-specific endo-(1,4)-β-D-glucanase) from the cotyledons of germinated nasturtium seeds. Plant J. 3: 691–700.

    Google Scholar 

  • Ferrarese, L., Trainotti, L., Moretto, P., de Laureto, P.P., Rascio, N. and Casadoro, G. 1995. Differential ethylene-inducible expression of cellulase in pepper plants. Plant Mol. Biol. 29: 735–747.

    Google Scholar 

  • Fischer, R.L. and Bennett, A.B. 1991. Role of cell wall hydrolases in fruit ripening. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42: 675–703.

    Google Scholar 

  • Gaffe, J., Tiznado, M.E. and Handa, A.K. 1997). Characterization and functional expression of a ubiquitously expressed tomato PME. Plant Physiol. 114: 1547–1556.

    Google Scholar 

  • Gonzalez-Bosch, C., del Campillo, E. and Bennett, A.B. 1997. Immunodetection and characterization of tomato endo-β-1,4-glucanase protein in flower abscission zones. Plant Physiol. 114: 1541–1546.

    Google Scholar 

  • Griffith, I.J., Pollock, J. and Klapper, D.G. 1991. Sequence polymorphism of Amb a I and Amb a II, the major allergens in Ambrosia artemisiifolia (short ragweed). Int. Arch. All. Appl. Immunol. 96: 296–304.

    Google Scholar 

  • Hagerman, A.E. and Austin, P.J. 1986. Continuous spectrophotometric assay for plant pectin methyl esterase. J. Agric. Food Chem. 34:.440–444.

    Google Scholar 

  • Helleboid, S., Bauw, G., Belingheri, L., Vasseur, J. and Hilbert, J.L. 1998. Extracellular β-1,3-glucanases are induced during early somatic embryogenesis in Cichorium. Planta 205: 56–63.

    Google Scholar 

  • Hird, D.L., Worrall, D., Hodge, R., Smartt, S., Paul, W. and Scott, R. 1993. The anther-specific protein encoded by the Brassica napus and Arabidopsis thaliana A6 gene displays similarity to β-1,3-glucanases. Plant J. 4: 1023–1033.

    Google Scholar 

  • Jansen, E.F., Jang, R. and MacDonnell, L.R. 1947. Citrus acetylesterase. Arch. Biochem. 15: 415–431.

    Google Scholar 

  • Kulikauskas, R. and McCormick, S. 1997. Identification of the tobacco and Arabidopsis homologues of the pollen-expressed LAT59 gene of tomato. Plant Mol. Biol. 34: 809–814.

    Google Scholar 

  • Kush, A., Goyvaerts, E., Chye, M.L. and Chua, N.H. 1990. Laticifer-specific gene expression in Hevea brasiliensis (rubber tree). Proc. Natl. Acad. Sci. USA 87: 1787–1790.

    Google Scholar 

  • Labavitch, J.M. 1981. Cell wall turnover in plant development. Annu. Rev. Plant Physiol. 32: 385–406.

    Google Scholar 

  • Malehorn, D.E., Scott, K.J., Shah, D.M. 1993. Structure and expression of a barley acidic β-glucanase gene. Plant Mol. Biol. 22: 347–360.

    Google Scholar 

  • Matsumoto, T., Sakai, F. and Hayashi, T. 1997. A xyloglucan-specific endo-1,4-β-glucanase isolated from auxin-treated pea stems. Plant Physiol. 114: 661–667.

    Google Scholar 

  • Medina-Escobar, N., Cárdenas, J., Moyano, E., Caballero, J.L. and Muñoz-Blanco, J. 1997. Cloning, molecular characterization and expression pattern of a strawberry ripening-specific cDNA with sequence homology to pectate lyase from higher plants. Plant Mol. Biol. 34: 867–877.

    Google Scholar 

  • Meeks-Wagner, D.R., Dennis, E.S., Tran Thanh Van, K. and Peacock, W.J. 1989. Tobacco genes expressed during in vitro floral initiation and their expression during normal plant development. Plant Cell 1: 2–35.

    Google Scholar 

  • Neale, A.D., Wahleithner, J.A., Lund, M., Bonnett, H.T., Kelly, A., Meeks-Wagner, D.R., Peacock, W.J. and Dennis, E.S. 1990. Chitinase, β-1,3-glucanase, osmotin, and extensin are expressed in tobacco explants during flower formation. Plant Cell 2: 673–684.

    Google Scholar 

  • Nessler, C.L. 1976. Ultrastructural and cytochemical investigation of laticifer differentiation in intact plants and cultured tissue of the opium poppy, Papaver somniferum L. Ph.D. dissertation, Indiana University, USA.

    Google Scholar 

  • Nessler, C.L. and Mahlberg, P.G. 1977. Cell wall perforation in laticifers of Papaver somniferum L. Bot. Gaz. 138: 402–408.

    Google Scholar 

  • Nessler, C.L. and Mahlberg, P.G. 1978. Laticifer ultrastructure and differentiation in seedlings of Papaver bracteatum Lindl., population Arya II (Papaveraceae). Am. J. Bot. 65: 978–983.

    Google Scholar 

  • Nessler, C.L. and Mahlberg, P.G. 1981. Cytochemical localiza-tion of cellulase activity in articulated, anastomosing laticifers of Papaver somniferum L. (Papaveraceae). Am. J. Bot. 68: 730–732.

    Google Scholar 

  • Osteryoung, K.W., Toenjes, K., Hall, B., Winkler, V. and Bennett, A.B. 1990. Analysis of tomato polygalacturonase expression in transgenic tobacco. Plant Cell 2: 1239–1248..576

    Google Scholar 

  • Pissavin, C., Robert-Baudouy, J. and Hugouvieux-Cotte-Pattat, N. 1996. Regulation of pelZ, a gene of the pelB-pelC cluster encoding a new pectate lyase of Erwinia chrysanthemi 3937. J. Bact. 178: 7187–7196.

    Google Scholar 

  • Rose, J.K.C., Brummell, D.A. and Bennett, A.B. 1996. Two divergent xyloglucan endotransglycosylases exhibit mutually exclusive patterns of expression in nasturtium. Plant Physiol. 110: 493–499.

    Google Scholar 

  • Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Plainview, NY.

    Google Scholar 

  • Schröder, R, Atkinson, R.G., Langenkämper, G. and Redgwell, R.J. 1998. Biochemical and molecular characterisation of xyloglucan endotransglycosylase from ripe kiwifruit. Planta 204: 242–251.

    Google Scholar 

  • Sheldrake, A.R. 1969. Cellulase in latex and its possible significance in cell differentiation. Planta 89: 82–84.

    Google Scholar 

  • Sheldrake, A.R. and Moir, G.F. 1970. A cellulase in Hevea latex. Physiol. Plant. 23: 267–277.

    Google Scholar 

  • Spencer, H.J. 1939. On the nature of the blocking of the laticiferous system at the leaf-base of Hevea brasiliensis. Ann. Bot. 3: 231–235.

    Google Scholar 

  • Taniguchi, Y., Ono, A., Sawatani, M., Nanba, M., Kohno, K., Usui, M, Kurimoto, M. and Matuhasi, T. 1995. Cry j I, a major allergen of Japanese cedar pollen, has pectase lyase enzyme activity. Allergy 50: 90–93.

    Google Scholar 

  • Thureson-Klein, A. 1970. Observations of the development and fine structure of the articulated laticifers of Papaver somniferum. Ann. Bot. 34: 751–759.

    Google Scholar 

  • Trainotti, L., Spolaore, S., Ferrarese, L. and Casadoro, G. 1997. Characterization of ppEG1, a member of a multigene family which encodes endo-β-1,4-glucanase in peach. Plant Mol. Biol. 34: 791–802.

    Google Scholar 

  • Weissbach, A. and Hurwitz, J. 1959. The formation of 2-keto-3-deoxyheptonic acid in extracts of Escherichia coli B. J. Biol. Chem. 234: 705–709.

    Google Scholar 

  • Williamson, G. 1991. Purification and characterization of pectin acetylesterase from orange peel. Phytochemistry 30: 445–449.

    Google Scholar 

  • Wing, R.A., Yamaguchi, J., Larabell, S.K., Ursin, V.M. and McCormick, S. 1989. Molecular and genetic characterization of two pollen-expressed genes that have sequence similarity to pectate lyases of the plant pathogen Erwinia. Plant Mol. Biol. 14: 17–28.

    Google Scholar 

  • Xu, W., Purugganan, M.M., Polisensky, D.H., Antosiewicz, D.M., Fry, S.C. and Braam, J. 1995. Arabidopsis TCH4, regulated by hormones and the environment, encodes a xyloglucan endotrans-glycosylase. Plant Cell 7: 1555–1567.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pilatzke-Wunderlich, I., Nessler, C.L. Expression and activity of cell-wall-degrading enzymes in the latex of opium poppy, Papaver somniferum L.. Plant Mol Biol 45, 567–576 (2001). https://doi.org/10.1023/A:1010624218855

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010624218855

Navigation