Skip to main content
Log in

Cancer Cell Heterogeneity

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Aaltonen LA, Peltomaki P, Leach FS, Pyllanen L, Sistonen P, Mecklin JP, Jarvinen H, Powell SM & Hamilton SR (1993). Clues to the pathogenesis of familial colorectal cancer. Science 260: 812–816.

    PubMed  Google Scholar 

  • Armitage P (1952). The statistical theory of bacterial populations subject to mutation. J Roy Stat Soc Ser B 14: 1–40.

    Google Scholar 

  • Aukerman SL, Siciliano MJ & Fidler IJ (1986). Heterogeneity of isozyme expression in tumor cells does not correlate with metastatic potential. Clin Exp Metastasis 4: 177–189.

    PubMed  Google Scholar 

  • Baylin SB, Weisburger WR, Eggleston JC, Mendelsohn G, Beaven MA, Abeloff MD & Ettinger DS (1978). Variable content of histaminase, L-dopa decarboylase and calcitonin in small-cell carcinoma of the lung. Biologic and clinical implications. New Engl J Med 299: 105–110.

    PubMed  Google Scholar 

  • Byers VS & Johnston JO (1977). Antigenic diferenes amomg osteogenic sarcoma tumor cells taken from different locations in human tumors. Cancer Res 37: 3173 et seq.

    PubMed  Google Scholar 

  • Cifone MA & Fidler IJ (1981). Increasing metastatic potential is associated with increasing genomic instability of clones isolated from murine neoplasms. Proc Natl Acad Sci USA 78: 6949–6952.

    PubMed  Google Scholar 

  • Emmert-Buck MR, Bonner RF, Smith PD et al. (1996). Laser capture microdissection. Science 274: 998–1001.

    PubMed  Google Scholar 

  • Fend F, Emmert-Buck MR & Chuaki R (1999). Laser capture microdissection of immuno-stained frozen sections for mRNA analysis. J Pathol 154: 61–66.

    Google Scholar 

  • Fialkow PJ (1979). Clonal origin of human tumors. J Amer Med Assoc 30: 135–143.

    Google Scholar 

  • Ford CE & Clarke M (1963). Cytogenetic evidence of clonal proliferation in primary reticular neoplasms. Canad Cancer Res Conf Proc 5: 129–146.

    Google Scholar 

  • Goldberg S & Defendi V (1979). Increased mutation rates in doubly viral transformed Chinese hamster cells. Somatic Cell Genet 5: 887–895.

    PubMed  Google Scholar 

  • Hartwell L (1992). Defects in a cell cycle checkpoint may be responsible for the genomic instability of cancer cells. Cell 71: 543–546.

    PubMed  Google Scholar 

  • Heppner GH, Miller BE & Miller FR (1983). Tumor subpopulation interactions in neoplasms. Biochim Biophys Acta 695: 215–226.

    PubMed  Google Scholar 

  • Kaden D, Gadi IK, Bardwell L, Gelman R & Sager R (1989). Spontaneous mutation rates of tumorigenic and nontumorigenic chinese hamster embryo fibroblast cell lines. Cancer Res 49: 3374–3379.

    PubMed  Google Scholar 

  • Kendal WS & Frost P (1986). Metastatic potential and spontaneous mutation rates: studies with two murine cell lines and their recently induced metastatic variants. Cancer Res 46: 6131–6135.

    PubMed  Google Scholar 

  • Kerbel RS, Waghorne C, Man Ms, Elliott B & Brietman ML (1987). Alteration of the tumorigenic and metastatic properties of neoplastic cells is associated with the process of calcium phosphate mediated DNA transfection. Proc Natl Acad Sci USA 84: 1263–1267.

    PubMed  Google Scholar 

  • Kern SE (1993). Clonality: more than just a tumor-progression model. J Natl Cancer Inst 85: 1020–1021.

    PubMed  Google Scholar 

  • Kyner D, Christman J, Acs G, Silagi S, Newcomb EW & Silverstein SC (1978). Co-cultivation of tumorigenic mouse melanoma cells with cells of a non-tumorigenic subclone inhibits plasminogen activator expression by the melanoma cells. J Cell Physiol 95: 159–167.

    PubMed  Google Scholar 

  • Leith JT, Michelson S, Faulkner LE & Bliven SF (1987). Growth properties of heterogenous human colon tumors. Cancer Res 47: 1045–1051.

    PubMed  Google Scholar 

  • Lejeune J, Berger R, Haines M, Lafourcade J, Vialatte J, Satge P & Turpin R (1963). Constitution d'un clone ´a 54 chromosomes au cours d'une leucoblastose chez une enfant mongolienne. CR Acad Sci (Paris) 256: 1195–1197.

    Google Scholar 

  • Lenoir GM, Preud'homme JL, Bernheim A & Berger R (1982). Correlation between immunoglobulin light chain expression and variant translocation in Burkitt's lymphoma. Nature 298: 474–476.

    PubMed  Google Scholar 

  • Luria SE & Delbr¨uck M (1943). Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28: 491–511.

    Google Scholar 

  • Michelson S, Miller BE, Glicksman AE & Leith JT (1987). Tumor microecology and competitive interactions. J Theoret Biol 128: 233–246.

    Google Scholar 

  • Miller BE, Miller FR, Wilburn D & Heppner G (1988). Dominance of a tumor subpopulation line in mixed heterogenous mouse mammary tumors. Cancer Res 48: 5747–5753.

    PubMed  Google Scholar 

  • Mitelman F (1991). “Catalogue of Chromosomal Aberrations in Cancer.” 4th Edition. Wiley-Liss: New York.

    Google Scholar 

  • Muleris M, Salmon RJ & Dutrillaux B (1986). Chromosomal study demonstrating the clonal evolution and metastatic origin of a metachronous colorectal carcinoma. Int J Cancer 38: 167–172.

    PubMed  Google Scholar 

  • Newcomb EW, Silverstein SC & Silagi S (1978). Malignant mouse melanoma cells do not form tumors when mixed with cells of a non-malignant sub-clone: relationships between plasminogen activator expression by the tumor cells and the host's immune response. J Cell Physiol 95: 169–177.

    PubMed  Google Scholar 

  • Nowell PC (1976). The clonal evolution of tumor cell populations. Science 194: 23–28.

    PubMed  Google Scholar 

  • Peinado MA, Malkhosyan S, Velasquez A & Perucho M (1992). Isolation and characterization of allelic losses and gains in colorectal tumors by arbitrarily primed polymerase chain reaction. Proc Natl Acad Sci USA 89: 10065–10069.

    PubMed  Google Scholar 

  • Perdue ML (1991). Dynamic instability of chromosomes and genomes. Cell 66: 427–431.

    PubMed  Google Scholar 

  • Russo CA, Weber TK, Volpe CM, Stoler DL, Petrelli NJ, Rodriguez-Bigas M, Burhans WC & Anderson GR (1995). An anoxia-inducible endonuclease and enhanced DNA breakage as contributors to genomic instability in cancer. Cancer Res 55: 1122–1128.

    PubMed  Google Scholar 

  • Sager R (1988). Mutation rates and mutational spectra in tumorigenic cell line. Cancer Surv 7: 325–333.

    PubMed  Google Scholar 

  • Sandberg AA & Yamada K (1966). Chromosomes and causation of human cancer and leukemia. I Karyotypic diversity in a single cancer. Cancer 19: 1869–1878.

    PubMed  Google Scholar 

  • Sandberg AA, Yamada K, Kikuchi Y & Takagi N (1967). Chromosomes and causation of human cancer and leukemia. III Karyotypes of cancerous effusions. Cancer 20: 1099–1116.

    Google Scholar 

  • Seshadri R, Kutlaka RJ, Trainor K, Matthews C & Morley AA (1987). Mutation rate of normal and malignant human lymphocytes. Cancer Res 47: 407–409.

    PubMed  Google Scholar 

  • Sirivatanauksorn Y, Drury R, Crnogorac-Jurcevic T, Sirivatanauksorn V & Lemoine N (1999). Laser-assisted microdissection: Applications in molecular pathology. J Pathol 189: 150–154.

    PubMed  Google Scholar 

  • Tisty TD (1995). Cell cycle control and genomic instability. Cancer Metastasis Rev 14: 1–2.

    Google Scholar 

  • Tisty TD, Margolin BH & Lum K (1989). Differences in the rates of gene amplification in nontumorigenic and tumorigenic cell lines as measured by Luria-Debr¨uck fluctuation analysis. Proc Natl Acad Sci USA 86: 9441–9445.

    PubMed  Google Scholar 

  • Trent JM (1984). Chromosomal alterations in human solid tumours: implications of the stem cell model to cancer cytogenetics.

  • Trent JM, Thompson FH & Ludwig C (1984). Evidence for selection of homogeneously staining regions in a human melanoma cell line. Cancer Res 44: 233–237.

    PubMed  Google Scholar 

  • Trent JM, Thomson FH & Buick RN (1985). Generation of clonal variants in a human ovarian carcinoma studied by chromosomal banding analysis. Cancer Genet Cytogenet 14: 153–161.

    PubMed  Google Scholar 

  • Virchow R (1858). “Die Cellular pathologie in ihrer Bergundung auf Physiologie und pathologischeGewebelehre.” Hirschwald: Berlin.

    Google Scholar 

  • Vogel F & Motulsky AG (1979). “Human Genetics. Problems and Approaches.” p. 317 Springer-Verlag: New York.

    Google Scholar 

  • Vogelstein B, Fearon ER, Hamilton SR & Feinberg AP (1988). Genetic alterations during colorectal tumor development. N Engl J Med 319: 525–532.

    PubMed  Google Scholar 

  • Windle B, Draper BW, Yin YX, O'Gorman S & Wahl GM (1991). A central role for chromosome breakage in gene amplification, deletion formation, and amplicon integration. Genes Dev 5: 160–174.

    PubMed  Google Scholar 

  • Wolff J (1907). “The Science of Cancerous Disease from Earliest Times to the Present” Trans B Ayoub (1989) Science History Publications: Canton MA

    Google Scholar 

  • Wolman SR (1983) Karyotypic progression in human tumors. Cancer Metastasis Revs 2: 257–293.

    Google Scholar 

  • Wolman SR (1986). Cytogenetic Heterogeneity: Its role in tumor evolution. Cancer Genet Cytogenet 19: 129–140.

    PubMed  Google Scholar 

  • Yamashina K & Heppner GH (1985). Correlation of frequency of induced mutation and metastatic potential in tumor cell lines from a single mouse mammary tumor. Cancer Res 45: 4015–4019.

    PubMed  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weiss, L. Cancer Cell Heterogeneity. Cancer Metastasis Rev 19, 345–350 (2000). https://doi.org/10.1023/A:1010614909387

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010614909387

Keywords

Navigation