Skip to main content
Log in

Acceleration Waves in Thermoelastic Beams

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The laws governing the propagation, growth and decay of acceleration waves in directed models of elastic beams are deduced for materials with zero and non-zero heat flux, that is non-conductors and conductors of heat. The equations depend explicitly on the geometric and inertial characteristic of the beam section and on the mechanical properties of the material. Solutions are derived for the velocities of propagation and the evolution (amplitude variation) of each type of wave (extension, bending, shear, twist). Results are discussed and some numerical examples presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nunziato, J.W. and Cowin, S.C., 'A non-linear theory of elastic materials with voids', Arch. Ration. Mech. Anal. 72 (1979) 175-201.

    Google Scholar 

  2. Capriz, G., Continua with Microstructure, Springer-Verlag, Berlin, 1989.

    Google Scholar 

  3. Mariano, P.M. and Augusti, G., 'Multifield description of microcracked continua: a local model', Math. Mech. Solids 3 (1998) 237-254.

    Google Scholar 

  4. Eriksen, J.L. and Truesdell, C.A., 'Exact theory of stress and strain in rods and shell', Arch. Ration. Mech. Anal. 1 (1958) 296-323.

    Google Scholar 

  5. Antman, S.S., The Theory of Rods, Handbuch der Physik, Band VI a/2, Springer-Verlag, Berlin, 1960.

    Google Scholar 

  6. Antman, S.S., Non-linear Problems of Elasticity, Springer-Verlag, New York, 1995.

    Google Scholar 

  7. Green, A.E. and Naghdi, P.M., 'Non-isotermal theory of rods, plates and shells', Int. J. Solids Struc. 6 (1970) 209-244.

    Google Scholar 

  8. Reissner, E., 'On a simple variational analysis of small finite deformations of prismatical beams', ZAMP 34 (1983) 642-648.

    Google Scholar 

  9. Simo, J.C. and Vu-Quoc, L., 'On the dynamics in space of rods undergoing large motions, a geometrically exact approach', Comput. Meth. Appl. Mech. Engng. 66 (1988) 125-161.

    Google Scholar 

  10. Simo, J.C. and Vu-Quoc, L., 'A geometrically exact rod model incorporating shear and torsion-warping deformation', Int. J. Solids Struc. 27(3) (1991) 371-393.

    Google Scholar 

  11. Villaggio, P., Mathematical Models of Elastic Structures, Cambridge University Press, 1997.

  12. Bailey, P.B. and Chen, P.J.: 'On the local and global behaviour of acceleration waves', Arch. Ration. Mech. Anal. 41 (1971) 121-131.

    Google Scholar 

  13. Bailey, P.B. and Chen, P.J.: 'On the local and global behaviour of acceleration waves: addendum asymptotic behaviour', Arch. Ration. Mech. Anal. 44 (1972) 212-216.

    Google Scholar 

  14. Wright, T.W., 'Acceleration waves in simple elastic materials', Arch. Ration. Mech. Anal. 50 (1973) 237-277.

    Google Scholar 

  15. Manacorda, T., Introduzione alla Termomeccanica dei Continui, Pitagora, Bologna, 1979.

    Google Scholar 

  16. Šilhavý , M., The Mechanics and Thermodynamics of Continuous Media, Springer-Verlag, Berlin, 1997.

    Google Scholar 

  17. Mariano, P.M. and Sabatini, L., 'Homothermal acceleration waves in multifield descriptions of continua', Int. J. Non-linear Mech. 35 (2000) 963-977.

    Google Scholar 

  18. Sabatini, L., 'Propagazione di onde di accelerazione in modelli multicampo di continui', Ph. D. Thesis in Structural Engineering, Università di Roma 'La Sapienza' (in Italian), 2000.

  19. Chadwick, P. and Currie, P.K., 'The propagation and growth of acceleration waves in heat conducting elastic materials', Arch. Ration. Mech. Anal. 49 (1972) 137-158.

    Google Scholar 

  20. Baldacci, R., Scienza delle Costruzioni, UTET, Torino, 1976.

    Google Scholar 

  21. Courant, R. and Hilbert, D., Methods of Mathematical Physics II, Wiley (Interscience), New York, 1962.

    Google Scholar 

  22. Varley, E. and Cumberbatch, E., 'Non-linear theory of wave fronts propagation', J. Inst.Math. Appl. 1 (1965) 101-112.

    Google Scholar 

  23. Ruberti, A. and Isidori, A., Teoria dei sistemi, Siderea, Roma, 1975.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabatini, L., Augusti, G. Acceleration Waves in Thermoelastic Beams. Meccanica 35, 519–546 (2000). https://doi.org/10.1023/A:1010592409020

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010592409020

Navigation