Skip to main content
Log in

Scientific production: A statistical analysis of authors in mathematical logic

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

We show that scientific production can be described by two variables: rate of production (rate of publications) and career duration. For mathematical logicians, we show that the time pattern of production is random and Poisson distributed, contrary to the theory of cumulative advantage. We show that the exponential distribution provides excellent goodness-of-fit to rate of production and a reasonable fit to career duration. The good fits to these distributions can be explained naturally from the statistics of exceedances. Thus, more powerful statistical tests and a better theoretical foundation is obtained for rate of production and career duration than has been the case for Lotka's Law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lotka, A. J., The Frequency of Distribution of Scientific Productivity, Journal of the Washington Academy of Science, 16 (1926) 317-323.

    Google Scholar 

  2. Pao, M. L., An Empirical Examination of Lotka's Law, Journal of the American Society for Information Science, 37 (1986) 26-33.

    Google Scholar 

  3. Price, D. J. D., Little Science, Big Science. Columbia University Press, New York, 1963.

    Google Scholar 

  4. Haitun, S. D., Stationary Scientometric Distributions. Part I. Different Approximations, Scientometrics, 4 (1982) 5-25. HAITUN, S. D., Stationary Scientometric Distributions. Part II. Non-Gaussian Nature of Scientific Activities, Scientometrics, 4 (1982) 89.102. HAITUN, S. D., Stationary Scientometric Distributions. Part III. The Role of the Zipf Distribution, Scientometrics, 4 (1982) 181.194.

  5. Wagner-dÖbler, R., Where has the Cumulative Advantage Gone? Some Observations about the Frequency Distribution of Scientific Productivity, of Duration of Scientific Participation, and of Speed of Publication, Scientometrics, 32 (1995) 123-132.

    Google Scholar 

  6. Gupta, B. M., Karisiddappa, C. R., Productivity of Authors as Reflected by Duration of Their Scientific Participation and Speed of Publication, Scientometrics, 39 (1997) 281-291.

    Google Scholar 

  7. Huber, J. C., Inventive Productivity and the Statistics of Exceedances, Scientometrics, 45 (1999) 33-53.

    Google Scholar 

  8. Wagner-dÖbler, R., Berg, J., The Dependence of Lotka's Law on the Selection of Time Periods in the Development of Scientific Areas and Authors, Journal of Documentation, 51 (1995) 28-43.

    Google Scholar 

  9. Allison, P. D., Long, J. S., Krauze, T. K., Cumulative Advantage and Inequality in Science, American Sociological Review, 47 (1982) 615-625.

    Google Scholar 

  10. GlÄnzel, W., Schubert, A., The Cumulative Advantage Function. A Mathematical Formulation Based on Conditional Expectations and Its Application to Scientometric Distribution, In: L. Egghe, R. Rousseau (Eds) Informetrics 89/90, New York: Elsevier, pp. 139-147, (1990).

    Google Scholar 

  11. Huber, J. C., Cumulative Advantage and Success-Breeds-success: The Value of Time Pattern Analysis, Journal of the American Society for Information Science, 49 (1998) 471-476.

    Google Scholar 

  12. Price, D. D., A General Theory of Bibliometric and Other Cumulative Advantage Processes, Journal of the American Society for Information Science, 27 (1976) 292-306.

    Google Scholar 

  13. Dufour, J., Roy, R., Generalized Portmanteau Statistics and Tests of Randomness, Communications in Statistics Theory and Methods, 15 (1986) 2953-2972.

    Google Scholar 

  14. Huber, J. C., Portmanteau Test for Randomness in Poisson Data, Communications in Statistics: Simulation and Computation, 29 (in press).

  15. Boswell, M. T., Poisson Index of Dispersion, In: S. Kotz, N. L. Johnson (Eds), Encyclopedia of Statistical Sciences (Vol. 7, pp. 25-26). New York: John Wiley & Sons, (1986).

    Google Scholar 

  16. Johnson, N. L., Kotz, S., Kemp, A. W., Univariate Discrete Distributions (2nd ed.), John Wiley & Sons, New York, 1993 p. 153.

    Google Scholar 

  17. Engelhardt, M., Reliability Estimation and Applications, In: N. Balakrishnan, ASIT B. Basu (Eds), The Exponential Distribution (pp. 73-91).New York: Gordon and Breach, (1995).

    Google Scholar 

  18. Johnson, N. L., Kotz, S., Balakrishnan, N., Continuous Univariate Distributions (2nd ed., Vol 1). John Wiley & Sons, New York, 1994, p. 508, eq. 19.31e.

    Google Scholar 

  19. D'agostino, R. B., Graphical Analysis, In: R. B. D'agostino, M. A. Stephens (Eds), Goodness of Fit Techniques (pp. 461-496). New York: Marcel Dekker, 1986.

    Google Scholar 

  20. Klein, J. P., Moeschberger, M. L., Survival Analysis: Techniques for Censored and Truncated Data. Springer-Verlag, New York, 1997.

    Google Scholar 

  21. Johnson, N. L., Kotz, S., Balakrishnan, N., Continuous Univariate Distributions (2nd ed., Vol 1). John Wiley & Sons, New York, 1994, p. 508, eq. 19.31d.

    Google Scholar 

  22. Stephens, M. A., Tests Based on EDF Statistics, In: R. B. D'agostino, M. A. Stephens (Eds), Goodness of Fit Techniques (pp. 97-193). New York: Marcel Dekker, 1986.

    Google Scholar 

  23. Hewett, J. E., Two-Stage and Multi-Stage Tests of Hypotheses, In: N. Balakrishnan, ASIT B. Basu (Eds), The Exponential Distribution (p. 456). New York: Gordon and Breach, (1995).

    Google Scholar 

  24. Bain, L. J., Engelhardt, M., Statistical Analysis of Reliability and Life-testing Models: Theory and Methods. Marcel Dekker, New York, 1991. ELANDT-JOHNSON, R. C., JOHNSON, N. L., Survival Models and Data Analysis. John Wiley & Sons, New York, 1980. ELSAYED, E. A., Reliability Engineering. Addison Wesley Longman, New York, 1996. JEWELL, N. P., KIMBER, A. C., LEE, M. T., WHITMORE, G. A., Lifetime Data: Models in Reliability and Survival Analysis. Kluwer Academic, Boston, MA, 1996.

    Google Scholar 

  25. Kaplan, E. L., Meier, P., Nonparametric Estimation from Incomplete Observations, Journal of the American Statistical Association, 53 (1958) 457-481.

    Google Scholar 

  26. Koziol, J. A., Goodness-of-fit tests for randomly censored data, Biometrika, 67 (1980) 693-696.

    Google Scholar 

  27. Lehman, H. C., Age and Achievement. Princeton University Press, Princeton, NJ, 1953.

    Google Scholar 

  28. Simonton, D. K., Creative Productivity: A Predictive and Explanatory Model of Career Trajectories and Landmarks, Psychological Review, 104 (1997) 66-89. 336 Scientometrics 50 (2001) J. C. HUBER, R. WAGNER-DÖBLER: Authors in mathematical logic

    Google Scholar 

  29. Wagner-DÖbler, R., Alter und intellektuelle Produktivität: Das Beispiel von Mathematikern, Logikern und Schachmeistern. DeZeitschrift für Gerontopsychologie und-psychiatrie, 9 (1996), 277-290.

    Google Scholar 

  30. Pickands, J. III, Statistical Inference Using Extreme Order Statistics, The Annals of Statistics, 3 (1975) 119-131.

    Google Scholar 

  31. Johnson, N. L., Kotz, S., Balakrishnan, N., Continuous Univariate Distributions (2nd ed., Vol 1). John Wiley & Sons, New York, 1994 pp. 614-620.

    Google Scholar 

  32. Embrechts, P., Kluppelberg, C., Mikosch, T., Modelling Extremal Events for Insurance and Finance. Springer, Berlin, 1997 pp. 294-352.

    Google Scholar 

  33. Huber, J. C., A Statistical Analysis of Special Cases of Creativity, Journal of Creative Behavior, 34 (2000) 203-225

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huber, J.C., Wagner-Döbler, R. Scientific production: A statistical analysis of authors in mathematical logic. Scientometrics 50, 323–337 (2001). https://doi.org/10.1023/A:1010581925357

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010581925357

Keywords

Navigation