Molecular Biology

, Volume 35, Issue 4, pp 584–590 | Cite as

Cotranslational Protein Folding

  • V. A. Kolb


The review analyzes the research concerning the folding of proteins in the course of their synthesis on ribosomes. The experimental data obtained for various proteins using various methods give grounds for concluding that a nascent protein largely acquires its spatial structure while still attached to the ribosome, and final folding into the biologically active conformation takes place as soon as the completed protein is released therefrom. Cotranslational folding is characteristic of both bacterial and eukaryotic cells, and appears to be the universal and the most evolutionarily ancient mechanism.


Experimental Data Spatial Structure Eukaryotic Cell Active Conformation Ancient Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Levinthal, C., J. Chim. Phys., 1968, vol. 65, pp. 44–45.Google Scholar
  2. 2.
    Baum, J. and Brodsky, B., Curr. Opin. Struct. Biol., 1999, vol. 9, pp. 122–128.Google Scholar
  3. 3.
    Kelly, J.W., Curr. Opin. Struct. Biol., 1998, vol. 8, pp. 101–106.Google Scholar
  4. 4.
    Mitraki, A. and King, J., BioTechnology, 1989, vol. 7, pp. 690–697.Google Scholar
  5. 5.
    Anfinsen, C.B., Haber, E., Sela, M., and White, F.H., Jr., Proc. Natl. Acad. Sci. USA, 1961, vol. 47, pp. 1309–1315.Google Scholar
  6. 6.
    Anfinsen, C.B., Science, 1973, vol. 181, pp. 223–230.Google Scholar
  7. 7.
    Anfinsen, C.B. and Scheraga, H.A., Adv. Protein Chem., 1975, vol. 29, pp. 205–300.Google Scholar
  8. 8.
    Creighton, T.E. and Goldenberg, D.P., J. Mol. Biol., 1984, vol. 179, pp. 497–526.Google Scholar
  9. 9.
    Ikai, A. and Tanford, C., Nature, 1971, vol. 230, pp. 100–102.Google Scholar
  10. 10.
    Epstein, H.F., Schechter, A.N., Chen, R.F., and Anfinsen, C.B., J. Mol. Biol., 1971, vol. 60, pp. 499–508.Google Scholar
  11. 11.
    Tanford, C., Aune, K.C., and Ikai, A., J. Mol. Biol., 1973, vol. 73, pp. 185–197.Google Scholar
  12. 12.
    Wright, P.E., Dyson, H.J., and Lerner, R.A., Biochemistry, 1988, vol. 27, pp. 7167–7175.Google Scholar
  13. 13.
    Teale, J.M. and Benjamin, D.C., J. Biol. Chem., 1977, vol. 252, pp. 4521–4526.Google Scholar
  14. 14.
    Fedorov, A.N. and Baldwin, T.O., J. Biol. Chem., 1997, vol. 272, pp. 32715–32718.Google Scholar
  15. 15.
    Blond-Elguindi, S. and Goldberg, M.E., Biochemistry, 1990, vol. 29, pp. 2409–2417.Google Scholar
  16. 16.
    Spirin, A.S., Mol. Biol., 1984, vol. 18, pp. 1445–1501.Google Scholar
  17. 17.
    Lim, V.I. and Spirin, A.S., J. Mol. Biol., 1986, vol. 188, pp. 565–574.Google Scholar
  18. 18.
    Kolb, V.A., Makeyev, E.V., Kommer, A., and Spirin, A.S., Biochem. Cell Biol., 1995, vol. 73, pp. 1217–1220.Google Scholar
  19. 19.
    Dice, J.F. and Goldberg, A.L., Proc. Natl. Acad. Sci. USA, 1975, vol. 72, pp. 3893–3897.Google Scholar
  20. 20.
    Chantrenne, H., The Biosynthesis of Protein. Modern Trends in Physiological Science, Alexander, P. and Bacq, Z., Eds., London: Pergamon, 1961, p. 122.Google Scholar
  21. 21.
    Phillips, D.C., Proc. Natl. Acad. Sci. USA, 1967, vol. 57, pp. 484–495.Google Scholar
  22. 22.
    De Coen, J.L., J. Mol. Biol., 1970, vol. 49, pp. 405–414.Google Scholar
  23. 23.
    Bogacheva, E.N., Goldanskii, V.I., Shishkov, A.V., Galkin, A.V., and Baratova, L.A., Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 2790–2794.Google Scholar
  24. 24.
    Cowie, D.B., Spiegelman, S., Roberts, R.B., and Duerksen, J.D., Proc. Natl. Acad. Sci. USA, 1961, vol. 47, pp. 114–122.Google Scholar
  25. 25.
    Zipser, D. and Perrin, D., Cold Spring Harbor Symp. Quant. Biol., 1963, vol. 28, pp. 533–537.Google Scholar
  26. 26.
    Kiho, Y. and Rich, A., Proc. Natl. Acad. Sci. USA, 1964, vol. 51, pp. 111–118.Google Scholar
  27. 27.
    Hamlin, J. and Zabin, I., Proc. Natl. Acad. Sci. USA, 1972, vol. 69, pp. 412–416.Google Scholar
  28. 28.
    Fedorov, A.N., Friguet, B., Djavadi-Ohaniance, L., Alakhov, Y.B., and Goldberg, M.E., J. Mol. Biol., 1992, vol. 228, pp. 351–358.Google Scholar
  29. 29.
    Friguet, B., Djavadi-Ohaniance, L., King, J., and Goldberg, M.E., J. Biol., Chem., 1994, vol. 269, pp. 15945–15949.Google Scholar
  30. 30.
    Bergman, L.W. and Kuehl, W.M., J. Biol. Chem., 1979, vol. 254, pp. 5690–5694.Google Scholar
  31. 31.
    Bergman, L.W. and Kuehl, W.M., J. Biol. Chem., 1979, vol. 254, pp. 8869–8876.Google Scholar
  32. 32.
    Peters, T., Jr. and Davidson, L.K., J. Biol. Chem., 1982, vol. 257, pp. 8847–8853.Google Scholar
  33. 33.
    Chen, W., Helenius, J., Braakman, I., and Helenius, A., Proc. Natl. Acad. Sci. USA, 1995, vol. 92, pp. 6229–6233.Google Scholar
  34. 34.
    Ryabova, L.A., Desplancq, D., Spirin, A.S., and Plückthun, A., Nature Biotechnol., 1997, vol. 15, pp. 79–84.Google Scholar
  35. 35.
    Mullet, J.E., Klein, P.G., and Klein, R.R., Proc. Natl. Acad. Sci. USA, 1990, vol. 87, pp. 4038–4042.Google Scholar
  36. 36.
    Komar, A.A., Kommer, A., Krasheninnikov, I.A., and Spirin, A.S., J. Biol. Chem., 1997, vol. 272, pp. 10646–10651.Google Scholar
  37. 37.
    Mouat, M.F., Int. J. Biochem. Cell Biol., 2000, vol. 32, pp. 327–337.Google Scholar
  38. 38.
    Frydman, J., Erdjument-Bromage, H., Tempst, R., and Hartl, F.U., Nature Struct. Biol., 1999, vol. 6, pp. 697–705.Google Scholar
  39. 39.
    Lin, L., DeMartino, G.N., and Greene, W.C., Cell, 1998, vol. 92, pp. 819–828.Google Scholar
  40. 40.
    Gilmore, R., Coffey, M.C., Leone, G., McLure, K., and Lee, P.W.K., EMBO J., 1996, vol. 15, pp. 2651–2658.Google Scholar
  41. 41.
    Veis, A., Leibovich, S.J., Evans, J., and Kirk, T.Z., Proc. Natl. Acad. Sci. USA, 1985, vol. 82, pp. 3693–3697.Google Scholar
  42. 42.
    Veis, A. and Kirk, T.Z., J. Biol. Chem., 1989, vol. 264, pp. 3884–3889.Google Scholar
  43. 43.
    Kolb, V.A., Makeyev, E.V., and Spirin, A.S., EMBO J., 1994, vol. 13, pp. 3631–3637.Google Scholar
  44. 44.
    Fedorov, A.N. and Baldwin, T.O., Proc. Natl. Acad. Sci. USA, 1995, vol. 92, pp. 1227–1231.Google Scholar
  45. 45.
    Sala-Newby, G.B. and Campbell, A.K., Biochim. Biophys. Acta, 1994, vol. 1206, pp. 155–160.Google Scholar
  46. 46.
    Makeyev, E.V., Kolb, V.A., and Spirin, A.S., FEBS Lett., 1996, vol. 378, pp. 166–170.Google Scholar
  47. 47.
    Kudlicki, W., Chirgwin, J., Kramer, G., and Hardesty, B., Biochemistry, 1995, vol. 34, pp. 14284–14287.Google Scholar
  48. 48.
    Hanes, J. and Plückthun, A., Proc. Natl. Acad. Sci. USA, 1997, vol. 94, pp. 4937–4942.Google Scholar
  49. 49.
    Makeyev, E.V., Kolb, V.A., and Spirin, A.S., FEBS Lett., 1999, vol. 444, pp. 177–180.Google Scholar
  50. 50.
    Nicola, A.V., Chen, W., and Helenius, A., Nat. Cell Biol., 1999, vol. 1, pp. 341–345.Google Scholar
  51. 51.
    Netzer, W. and Hartl, F.U., Nature, 1997, vol. 388, pp. 343–349.Google Scholar
  52. 52.
    Zipser, D., J. Mol. Biol., 1963, vol. 7, pp. 739–751.Google Scholar
  53. 53.
    Kolb, V.A., Makeyev, E.V., and Spirin, A.S., J. Biol. Chem., 2000, vol. 275, pp. 16597–16601.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2001

Authors and Affiliations

  • V. A. Kolb
    • 1
  1. 1.Institute of Protein Research, Russian Academy of Sciences, PushchinoMoscow RegionRussia

Personalised recommendations