Skip to main content
Log in

Fractal Dimension of Fracture Surfaces

  • Published:
Metal Science and Heat Treatment Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. V. S. Ivanova, A. S. Balankin, I. E. Bunin, and A. A. Oksogoev, Synergetics and Fractals in Materials Science [in Russian], Nauka, Moscow (1994).

    Google Scholar 

  2. P. V. Gol'dshtein and A. B. Mosolov, “Fractal cracks,” Prikl. Matem. Mekh., 56, Issue 4 (1992).

  3. M. A. Shtremel', A. M. Avdeenko, and E. I. Kuz'ko, “On the evolution of ductile fracture as self-organization with degeneration of the dimension, Fiz. Tverd. Tela, 37(12), 3751–3754 (1995).

    Google Scholar 

  4. L. J. Hunter, M. Strangwood, and P. Bowen, “Effects of microstructure on the fracture behavior of the α + β titanium alloy Ti – 4 Al – 4 Mo – 2 Sn – 0.5 Si wt.% (IMI 550),” in: Proc. 8th World Titanium Conf. “Titanium'95” Birmingham (UK), Vol. 2, University Press, Cambridge (1995), pp. 925–932.

    Google Scholar 

  5. V. N. Kovaleva, V. A. Moskalenko, and V. I. Startsev, “Morphology and nature of development of slip bands in single crystals of titanium alloys,” Fiz. Met. Metalloved., 52(2), 391–398 (1981).

    Google Scholar 

  6. R. F. Voss, “Random fractals: characterization and measurement,” in: R. Pynn and A. Skjeltorp (eds.), Scaling Phenomena in Disordered Systems, Plenum Press, New York (1985), pp. 1–11.

    Google Scholar 

  7. B. B. Mandelbrot, D. E. Passoja, and A. J. Paulay, “Fractal character of fracture surfaces of metals,” Nature, No. 308, 721–722 (1984).

    Google Scholar 

  8. J. J. Mecholsry and D. E. Pasoja, “Quantitative analysis of brittle fracture surfaces using fractal geometry,” J. Am. Ceram. Soc., 72(1), 60–65 (1989).

    Google Scholar 

  9. M. Berry and J. Hannay, “Topography of random surfaces,” Nature, No. 273, 573 (1978).

    Google Scholar 

  10. V. V. Kartuzov and N. V. Minakov, “Description of surface fracture occurring by the mechanism of formation or merging of dimples in the concept of fractal dimension,” in: Electron Microscopy and Strength of Materials [in Russian], IPM NAN Ukrainy, Kiev (1997), pp. 69–76.

    Google Scholar 

  11. K. Pelikan, Deformacne Procesy a Porusovanie Poroviteno Zeleza, Author's Abstract of Candidate's Thesis, Kosice (1986).

  12. B. A. Kolachev, V. A. Livanov, and A. A. Bukhanova, Mechanical Properties of Titanium and Its Alloys [in Russian], Metallurgiya, Moscow (1974).

    Google Scholar 

  13. A. V. Minakova, V. N. Minakov, N. V. Minakov, and V. M. Adeev, “Effect of the temperature of fracture of MER and IEBR titanium on the dimple size,” Metallofiz. Nov. Tekhnol., 17(11), 68 (1995).

    Google Scholar 

  14. V. N. Minakov, N. V. Minakov, and Yu. N. Porezov, “Special features of hardening of alloys of technically pure titanium under uniaxial stretching and rolling,” Metallofiz. Nov. Tekhnol., 20(9), 722 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trefilov, V.I., Kartuzov, V.V. & Minakov, N.V. Fractal Dimension of Fracture Surfaces. Metal Science and Heat Treatment 43, 95–98 (2001). https://doi.org/10.1023/A:1010537031635

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010537031635

Keywords

Navigation