Skip to main content
Log in

Increase of Membrane Permeability of Mitochondria Isolated from Water Stress Adapted Potato Cells

  • Published:
Bioscience Reports

Abstract

In order to gain some insight into mitochondria permeability under water stress, intact coupled mitochondria were isolated from water stress adapted potato cells and investigations were made of certain transport processes including the succinate/malate and ADP/ATP exchanges, the plant mitochondrial ATP-sensitive potassium channel (PmitoKATP) and the plant uncoupling mitochondrial protein (PUMP). The V maxL values measured for succinate/malate and ADP/ATP carriers, as photometrically investigated, as well as the same values for the PmitoATP and the PUMP were found to increase; this suggested that mitochondria adaptation to water stress can cause an increase in the membrane permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Tezara, W., Mitchell, V. J., Driscoll, S. D., and Lawlor, D. W. (1999) Nature 401:914-917.

    Google Scholar 

  2. Raghavendra, A. S., Pdamasree, K., and Saradadevi, K. (1994) J. Plant Sci. 97:1-14.

    Google Scholar 

  3. Krömer, S. (1995) Annu. Rev. Plant Physiol. Plant Mol. Biol. 46:45-47.

    Google Scholar 

  4. Leone, A., Costa, A., Tucci, M., and Grillo, S. (1994) Plant Physiol. 106:703-712.

    Google Scholar 

  5. Leone, A., Costa, A., Tucci, M., and Grillo, S. (1994) Physiol. Plant. 92:21-30.

    Google Scholar 

  6. Schmitt, N. and Dizengremel, P. (1989) Plant Physiol. Biochem. 27:17-26.

    Google Scholar 

  7. Sells, G. D. and Koeppe, D. E. (1981) Plant Physiol. 68:1058-1063.

    Google Scholar 

  8. Peckmann, K. and Herppich, W. B. (1998) J. Plant Physiol. 152:518-524.

    Google Scholar 

  9. Pastore, D., Stoppelli, M. C., Di Fonzo, N., and Passarella, S. (1999) J. Biol. Chem. 274:26683-26690.

    Google Scholar 

  10. Vercesi, A. E., Martins, I. S., Silva, M. A. P., Leite, H. M. F., Cuccovia, I. M., and Chaimovich, H. (1995) Nature 375:24.

    Google Scholar 

  11. Jezek, P., Costa, A. D. T., and Vercesi, A. E. (1996) J. Biol. Chem. 271:32743-32748.

    Google Scholar 

  12. Jezek, P., Costa, A. D. T., and Vercesi, A. E. (1997) J. Biol. Chem. 272:24272-24278.

    Google Scholar 

  13. Jezek, P. et al. (1998) Biochim. Biophys. Acta 1365:319-327.

    Google Scholar 

  14. Purvis, A. C. (1997) Physiol. Plant. 100:165-170.

    Google Scholar 

  15. Laloi, M. (1997) Nature 389:135-136.

    Google Scholar 

  16. Maia, I. G., Benedetti, C. E., Lèite, A., Turcinelli, S. R., Vercesi, A. E., and Arruda, P. (1998) FEBS Lett. 429:403-406.

    Google Scholar 

  17. Nantes, I. L., Fagian, M. M., Catisti, R., Arruda, P., Maia, I. G., and Vercesi, A. E. (1999) FEBS Lett. 457:103-106.

    Google Scholar 

  18. Pastore, D., Fratianni, A., Di Pede, S., and Passarella, S. (2000) FEBS Lett. 470:88-92.

    Google Scholar 

  19. Kowaltowski, A. J., Costa, A. D. T., and Vercesi, A. E. (1998) FEBS Lett. 425:213-216.

    Google Scholar 

  20. Van Emmerik, W. A. M., Wagner, A. M., and van der Plas, L. H. W. (1992) Plant Physiol. 139:390-396.

    Google Scholar 

  21. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951) J. Biol. Chem. 193:265-275.

    Google Scholar 

  22. Neuburger, M., Journet, E. P., Bligny, R., Carde, J. P., and Douce, R. (1982) Arch. Biochem. Biophys. 217:312-323.

    Google Scholar 

  23. Douce, R., Bourgouignon, J., Brouquisse, R., and Neuburger, M. (1987) Methods in Enzymol. 148:403-415.

    Google Scholar 

  24. Passarella, S., Ostuni, A., Atlante, A., and Quagliariello, E. (1988) Biochem. Biophys. Res. Commun. 156:978-986.

    Google Scholar 

  25. Pallotta, M. L., Fratianni, A., and Passarella, S. (1999) FEBS Lett. 462:313-316.

    Google Scholar 

  26. Gimpel, J. A., De Haan, E. J., and Tager, J. M. (1973) Biochim. Biophys. Acta 292:582-591.

    Google Scholar 

  27. Barile, M. et al. (1994) Biochem. Pharmacol. 48:1405-1412.

    Google Scholar 

  28. Moore, A. L. and Bonner Jr., W. D. (1982) Plant Physiol. 70:1271-1276.

    Google Scholar 

  29. Zottini, M., Mandolino, G., and Zannoni, D. (1993) Plant Physiol. 102:579-585.

    Google Scholar 

  30. Klingerberg, M. and Slenczka, W. (1959) Biochem. J. 331:486-517.

    Google Scholar 

  31. Valenti, D., Barile, M., Quagliariello, E., and Passarella, S. (1999) FEBS Lett. 444:291-295.

    Google Scholar 

  32. Scandalios, J. G. (1993) Plant Physiol. 101:7-12.

    Google Scholar 

  33. Alscher, R. G., Donahue, J. L., and Cramer, C. L. (1997) Physiol. Plant. 100:224-233.

    Google Scholar 

  34. Skulachev, V. P. (1991) FEBS Lett. 294:158-162.

    Google Scholar 

  35. Pastore, D., Trono, D., and Passarella, S. (1999) Plant Byosist. 133:219-228.

    Google Scholar 

  36. Kowaltowski, A. J. and Vercesi, A. E. (1999) Free Radic. Biol. Med. 26:463-471.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fratianni, A., Pastore, D., Pallotta, M.L. et al. Increase of Membrane Permeability of Mitochondria Isolated from Water Stress Adapted Potato Cells. Biosci Rep 21, 81–91 (2001). https://doi.org/10.1023/A:1010490219357

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010490219357

Navigation