Skip to main content
Log in

Characteristic Features of the Kinetics of Decomposition of Supercooled Austenite of Alloy Steels in the Pearlite Range

  • Published:
Metal Science and Heat Treatment Aims and scope

Abstract

The kinetics of decomposition of supercooled austenite of medium-carbon Cr – Ni – Mo steels in the pearlite range is studied by dilatometric and metallographic methods with computer processing of the data. It is shown that the rate of the decomposition of supercooled austenite in the pearlite range oscillates with a low amplitude. The changes in the exponent in the Avrami and Ostin – Rikket equations that describe the decomposition of supercooled austenite are associated with simultaneous processes of austenitic transformation whose kinetics differs substantially in local regions of the metal, which is mainly connected with the polymodal nature of the grain structure of the austenite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. Gautier, A. Simon, and G. Beck, “Plasticité de transformation durant la transformation perlitique d'un acier eutectoide,” Acta Metall., 35, 1397–1375 (1987).

    Google Scholar 

  2. M. Umemoto and I. Tamura, “Kinetics of transformation of steels on continuous cooling,” Tetsu to Hagane, 68(3), 383–392 (1982).

    Google Scholar 

  3. H. P. Hougardy and K. Yamazaki, “An improved calculation of the transformation of steels,” Steel Res., 57(9), 466–471 (1986).

    Google Scholar 

  4. Ya. B. Zel'dovich, “On the theory of formation of a new phase. Cavitation,” Zh. Eksp. Teor. Fiz., 12, Issues 11–12, 525–538 (1942).

    Google Scholar 

  5. L. Fang, W. E. Wood, and D. G. Atteridge, “Identification and range quantification of steel transformation products by transformation kinetics,” Metall. Mater. Trans., 28A(1), 3–14 (1997).

    Google Scholar 

  6. J. Christian, The Theory of Transformations in Metals and Alloys, Pergamon Press, Oxford (U.K.) (1975).

    Google Scholar 

  7. S. A. Khan and H. K. D. H. Bhadeshia, “The bainite transformation in chemically heterogeneous 300M high-strength steel,” Metall. Trans., 21A, 859–875 (1990).

    Google Scholar 

  8. N. X. Sun, X. D. Liu, and K. Lu, “An explanation to the anomalous Avrami exponent,” Scr. Mater., 34(8), 1201–1207 (1996).

    Google Scholar 

  9. M. J. Starink, “Kinetics equations for diffusion-controlled precipitation reactions,” J. Mater. Sci., 32(1), 4061–4070 (1997).

    Google Scholar 

  10. Eon-Sik Lee and G. Kim Young, “A transformation kinetic model and its application to Cu – Zn – Al shape memory alloys. 1. Isothermal condition,” Acta Metall. Mater., 38(9), 1669–1676 (1990).

    Google Scholar 

  11. M. L. Bernshtein (ed.), Steel. Metal Science, A Handbook [Russian translation], Vol. 1, Metallurgiya, Moscow (1995).

    Google Scholar 

  12. V. Erukhimovitch and J. Baram, “Crystallization kinetics,” Phys. Rev. B, 50(9), 5854–5856 (1994).

    Google Scholar 

  13. Yu. V. Yudin, M. A. Gervas'ev, and T. A. Kansafarova, “Effect of chromium and nickel on the stability of supercooled austenite in chromium-nickel-molybdenum steels,” Fiz. Met. Metalloved., 87, Issue 4, 99–102 (1999).

    Google Scholar 

  14. E. S. Ventsel', Probability Theory [in Russian], Vysshaya Shkola, Moscow (1969).

    Google Scholar 

  15. V. P. Scripov, Metastable Fluid [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  16. V. P. Skripov and V. P. Koverda, Spontaneous Crystallization of Supercooled Fluids [in Russian], Nauka, Moscow (1984).

    Google Scholar 

  17. W. Dyuk, Computer Processing of Data in Examples [Russian translation], Piter, St. Petersburg (1997).

    Google Scholar 

  18. V. M. Farber, “Transformations of supercooled austenite,” Fiz. Met. Metalloved., 76, Issue 2, 40–55 (1993).

    Google Scholar 

  19. M. I. Gol'dshtein and V. M. Farber, Dispersion Hardening of Steel [in Russian], Metallurgiya, Moscow (1979).

    Google Scholar 

  20. F. N. Tavadze (ed.), Iron Metallography [Russian translation], Metallurgiya, Moscow (1972).

    Google Scholar 

  21. S. A. Saltykov, Stereometric Metallography [in Russian], Metallurgiya, Moscow (1976).

    Google Scholar 

  22. L. E. Popova and A. A. Popov, Diagrams of Transformations of Austenite in Steels and of Beta-Solution in Titanium Alloys [in Russian], Metallurgiya, Moscow (1991).

    Google Scholar 

  23. R. W. Kahn and P. Haasen (eds.), Physical Metallurgy, Vol. 2 [Russian translation], Metallurgiya, Moscow (1987).

    Google Scholar 

  24. V. M. Farber, T. G. Potemkina, A. A. Kruglov, and E. A. Savenkova, “A study of structural transformations and characteristic features of secondary hardening in high-strength steels alloyed with Cu and Al,” Izv. Akad. Nauk SSSR, Met., No. 3, 89–93 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yudin, Y.V., Farber, V.M. Characteristic Features of the Kinetics of Decomposition of Supercooled Austenite of Alloy Steels in the Pearlite Range. Metal Science and Heat Treatment 43, 45–50 (2001). https://doi.org/10.1023/A:1010470206231

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010470206231

Keywords

Navigation