Skip to main content

On τ-Closed Formations of n-Ary Group

Abstract

We prove that if G is a nonsingle-element n-ary finite group that belongs to a τ-closed formation \(\mathfrak{F}\), then \(G/{\text{soc(}}G{\text{)}} \in \Phi _\tau (\mathfrak{F})\), where \(\Phi _\tau (\mathfrak{F})\) is the intersection of all maximal τ-closed subformations of the τ-closed formation of n-ary groups \(\mathfrak{F}\).

This is a preview of subscription content, access via your institution.

REFERENCES

  1. 1.

    A. G. Kurosh, Lectures on General Algebra [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  2. 2.

    S. A. Rusakov, Algebraic n-Ary Systems [in Russian], Navuka i Tékhnika, Minsk (1992).

    Google Scholar 

  3. 3.

    L. A. Shemetkov, “On the product of formations of algebraic systems,” Alg. Log. 23, No. 26, 711–729 (1984).

    Google Scholar 

  4. 4.

    L. A. Shemetkov and A. N. Skiba, Formations of Algebraic Systems [in Russian], Nauka, Moscow (1989).

    Google Scholar 

  5. 5.

    A. N. Skiba, Algebra of Formations [in Russian], Minsk (1997).

  6. 6.

    U. C. Herzfeld, “Frattini classes of formations of finite groups,” Boll. Unione Mat. Ital. 7, 601–611 (1988).

    Google Scholar 

  7. 7.

    H. Neumann, Varieties of Groups [Russian translation], Mir, Moscow (1969).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Al Dababseh Avni Faez On τ-Closed Formations of n-Ary Group. Ukrainian Mathematical Journal 53, 129–133 (2001). https://doi.org/10.1023/A:1010449119647

Download citation

Keywords

  • Finite Group