Skip to main content
Log in

Environmental and Genotypic Influences on Isoquinoline Alkaloid Content in Sanguinaria canadensis

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

In a common garden, we investigated genetic and environmental influences on alkaloid production using Sanguinaria canadensis as a model. Nutrient and shade regimes were applied to replicated clones over one growing season, and induction of alkaloid production in bloodroot was tested on a whole-plant basis using jasmonic acid as an elicitor. Alkaloid concentrations increased with decreasing light intensity and fertilizer levels. Induction was not achieved by foliar application of jasmonic acid. Genetic influences represented by clone effects may be indicated by variation in alkaloid concentration by clone, but this experimental design did not allow us to distinguish genetic from pre-experiment environmental influences on the rhizomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • ANONYMOUS. 1996. Statistical Analysis Software. Version 6.12. SAS Institute, Carey, NC.

  • AERTS, R. J., GISI, D., DECAROLIS, E., DELUCA, V., and BAUMANN, T. W. 1994. Methyl jasmonate vapor increases the developmentally controlled synthesis of alkaloids in Catharanthus and Cinchona seedlings. Plant J. 5:635–642.

    Google Scholar 

  • AGRESTI, A. 1996. An Introduction to Categorical Data Analysis. Wiley, New York.

    Google Scholar 

  • AGRAWAL, A. A. 1998. Induced responses to herbivory and increased plant performance. Science 279:1201-1202.

    Google Scholar 

  • ARNASON, J. T., GUÈRIN, B., KRAML, M. M., MEHTA, B., REDMOND, R. W., and SCIANO, J. C. 1992. Phototoxic and photochemical properties of sanguinarine. Photochem. Photobiol. 55:35-38.

    Google Scholar 

  • BALDWIN, I. T. 1996. Methyl lasmonate-induced nicotine production in Nicotiana attenuata: Inducing defenses in the field without wounding. Ent. Exp. et Appl. 80:213-220.

    Google Scholar 

  • BALDWIN, I. T. 1998. Jasmonate-induced responses are costly but benefit plants under attack in native populations. Proc. Natl. Acad. Sci. USA 95:8113-8118.

    Google Scholar 

  • BALDWIN, I. T., GORHAM, D., SCHMELZ, E. A., LEWANDOWSKI, C. A., and LYNDS, G. Y. 1998. Allocation of nitrogen to an inducible defense and seed production in Nicotiana attenuata. Oecologia 115:541-552.

    Google Scholar 

  • BEATTIE, A. J., and CULVER, D. C. 1981. The guild of myrmecochores in the herbaceous flora ofWest Virginia forests. Ecology 62:107-115.

    Google Scholar 

  • BRYANT, J. P., CHAPIN III, F. S., and KLEIN, D. R. 1983. Carbon-nutrient balance of plants in relation to vertebrate herbivory. Oikos 40:357-368.

    Google Scholar 

  • CLINE, S. D., McHALE, R. J., and COSCIA, C. J. 1993. Differential enhancement of benzophenanthridine alkaloid content in cell-suspension cultures of Sanguinaria canadensis under conditions of combined hormonal deprivation and fungal elicitation. J. Nat. Prod. 56:1219-1228.

    Google Scholar 

  • COLEMAN, J. S., and JONES, C. G. 1991. A phytocentric perspective of phytochemical induction by herbiovres, pp. 3-46, in D. W. Tallamy and M. J. Raupp (eds.). Phytochemical Induction by Herbivores. Wiley, New York.

    Google Scholar 

  • COLEY, P. D., BRYANT, J. D., and CHAPIN III, F. S. 1985. Resource availability and plant antiherbivore defense. Science 230:895-899.

    Google Scholar 

  • DOWNUM, K. R. 1992. Tansley Review No. 43: Light-activated plant defense. New Phytol. 122:401-420.

    Google Scholar 

  • EILERT, U. 1998. Induction of alkaloid biosynthesis and accumulation in plants and in vitro cultures in response to elicitation, pp. 219-238, in M. F. Roberts and M.Wink (eds.). Alkaloids: Biochemistry, Ecology, and Medicinal Applications. Plenum, New York.

    Google Scholar 

  • FACCHINI, P. J., JOHNSON, A. G., POUPART, J. J. and DELUCA, V. 1996. Uncoupled defense gene expression and antimicrobial alkaloid accumulation in elicited opium poppy cell cultures. Plant Physiol. 111:687-697.

    Google Scholar 

  • FAGERSTROM, T., LARSSON, S., and TENOW, O. 1987. On optimal defense in plants. Funct. Ecol. 1:73-81.

    Google Scholar 

  • FEENY, P. 1976. Plant apparency and chemical defense, pp. 1-14, in J. Wallace and R. Mansell (eds.). Biochemical Interactions Between Plants and Insects: Recent Advances in Phytochemistry, Vol. 10, Plenum, New York.

    Google Scholar 

  • GUNDLACH, J., MULLER, M. J., KUCHAN, T. M., and ZENK, M. H. 1992. Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc. Natl. Acad. Sci. 89:2389-2393.

    Google Scholar 

  • HASHIMOTO, Y., OKADA, M. I., SHOME, U., and KATO, A. 1986. The analysis of cell contents of some papaveraceous plants by newly devised automated histochemical chromatography. Anal. Lett. 19:2253-2260.

    Google Scholar 

  • HERMS, D. A., and MATTSON, W. J. 1992. The dilemma of plants: To grow or defend. Q. Rev. Biol. 67:283-334.

    Google Scholar 

  • IGNATOV, A., CLARK, W. G., CLINE, S. D., PSENAK, M., KRUEGER, R. J., and COSCIA, J. 1996. Elicitation of dihydrobenzophenanthridine oxidase in Sanguinaria canadensis cell cultures. Phytochemistry 43:1141-1144.

    Google Scholar 

  • KARBAN R., AGRAWAL, A. A., and MANGEL, M. 1997. The benefits of induced defenses against herbivores. Ecology 78:1351-1355.

    Google Scholar 

  • LEVIN, D. 1976. Alkaloid-bearing plants: An ecogeographic perspective. Am. Nat. 110:261-284.

    Google Scholar 

  • LYON, D. L. 1992. Bee pollination of facultatively xenogamous Sanguinaria canadensis L. Bull. Torrey. Bot. Soc. 119:368-375.

    Google Scholar 

  • MAHADY, G. B., SCHILLING, A. B., and BEECHER, C. W. W. 1993. Sanguinaria canadensis L. (Sanguinarius): In vitro culture and the production of benzophenanthridine alkaloids, pp. 313-327, in Y. P. S. Bajaj (ed.). Biotechnology in Agriculture and Forestry. Vol. 24: Medicinal and Aromatic Plants V. Springer-Verlag, Berlin.

    Google Scholar 

  • MADDOX, G. D., and CAPPUCCINO, N. 1986. Genetic determination of plant susceptibility to a herbivorous insect depends on environmental context. Evolution 40:863-866.

    Google Scholar 

  • MARINO, P. C., EISENBERG, R. M., and CORNELL, H. V. 1997. Influence of sunlight and soil nutrients on clonal growth and sexual reproduction of the understory perennial herb Sanguinaria canadensis L. Bull. Torrey Bot. Soc. 124:219-227.

    Google Scholar 

  • MILLER, J. S., and FEENY, P. 1983. Effects of benzylisoquinoline alkaloids on the larvae of polyphagous Lepidoptera. Oecologia 58:332-339.

    Google Scholar 

  • RALPHS, M. H., MANNERS, G. D., and GARDNER, D. R. 1998. Influence of light and photosynthesis on alkaloid concentration in larkspur. J. Chem. Ecol. 24:167-182.

    Google Scholar 

  • ROBERTS, M. F. 1998. Enzymology of alkaloid biosynthesis, pp. 109-146, in M. F. Roberts and M. Wink (eds.). Alkaloids: Biochemistry, Ecology, and Medicinal Applications. Plenum, New York.

    Google Scholar 

  • SAITO, K., and MURAKOSHI, I. 1998. Genes in alkaloid metabolism, pp. 147-158, in M. F. Roberts and M. Wink (eds.). Alkaloids: Biochemistry, Ecology, and Medicinal Applications. Plenum, New York.

    Google Scholar 

  • SCHMELLER, T., LATZ-BRUNING, B., and WINK, M. 1997. Biochemical activites of berberine, palmatine, and sanguinarine mediating chemical defense against microorganisms and herbivores. Phytochemistry 44:257-266.

    Google Scholar 

  • SULTAN, S. E. 1995. Phenotypic plasticity and plant adaptation. Acta Bot. Neerl. 44:363-383.

    Google Scholar 

  • THALER, J. S. 1999. Induced resistance in agricultural crops: Effects of Jasmonic acid on herbivory and yield in tomato plants. Environ. Entomol. 28:30-37.

    Google Scholar 

  • THALER, J. S., FIDANTSEF, A. L., DUFFEY, S. S., and BOSTOCK, R. M. 1999. Trade-offs in plant defense against pathogens and herbivores: A field demonstration of chemical elicitors of induced resistance. J. Chem. Ecol. 25:1597-1609.

    Google Scholar 

  • THALER, J. S., STOUT, M. J., KARBAN, R., and DUFFEY, S. S. 1996. Exogenous jasmonates simulate insect wounding in tomato plants (Lycopersicon esculentrum) in the laboratory and field. J. Chem. Ecol. 22:1767-1781.

    Google Scholar 

  • THORNE, E. M., BOULWARE, R. T., HARKRADER, R. J., and SOUTHARD, G. L. 1986. HPLC analysis of sanguinarine in oral health care products. J. Soc. Cosmet. Chem. 37:279-286.

    Google Scholar 

  • TUOMI, J., NIEMELA, P., and HAUKIOJA, E. 1984. Nutrient stress: An explanation for plant anti-herbivore responses to defoliation. Oecologia 61:208-210.

    Google Scholar 

  • VAN DAM, N. M., VANDERMEIJDEN, E., and VERPOORTE, R. 1993. Induced responses in 3 alkaloidcontaining plant-secies. Oecologia 95:425-430.

    Google Scholar 

  • WALLER, G. R., and NOWACKI, E. K. 1978. Alkaloid Biology and Metabolism in Plants. Plenum, New York.

    Google Scholar 

  • WINK, M., and ROBERTS, M. F. 1998. Compartmentation of Alkaloid Synthesis, Transport, and Storage, pp. 239-262, in Alkaloids: Biochemistry, Ecology, and Medicinal Applications. Plenum, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salmore, A.K., Hunter, M.D. Environmental and Genotypic Influences on Isoquinoline Alkaloid Content in Sanguinaria canadensis. J Chem Ecol 27, 1729–1747 (2001). https://doi.org/10.1023/A:1010448406809

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010448406809

Navigation