Journal of Chemical Ecology

, Volume 27, Issue 8, pp 1667–1676 | Cite as

Avoidance Response of Juvenile Pacific Treefrogs to Chemical Cues of Introduced Predatory Bullfrogs

  • Douglas P. Chivers
  • Erica L. Wildy
  • Joseph M. Kiesecker
  • Andrew R. Blaustein


Bullfrogs (Rana catesbeiana), native to eastern North America, were introduced into Oregon in the 1930's. Bullfrogs are highly efficient predators that are known to eat a variety of prey including other amphibians. In laboratory experiments, we investigated whether juvenile Pacific treefrogs (Hyla regilla) recognize adult bullfrogs as a predatory threat. The ability of prey animals to acquire recognition of an introduced predator has important implications for survival of the prey. We found that treefrogs from a population that co-occurred with bullfrogs showed a strong avoidance of chemical cues of bullfrogs. In contrast, treefrogs from a population that did not co-occur with bullfrogs, did not respond to the bullfrog cues. Additional experiments showed that both populations of treefrogs use chemical cues to mediate predation risk. Treefrogs from both populations avoided chemical alarm cues from injured conspecifics.

Predator recognition introduced predators chemical cues alarm signals Pacific treefrogs bullfrogs Hyla regilla Rana catesbeiana 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ADAMS, M. J., and CLAESON, S. 1998. Field response of tadpoles to conspecific and heterospecific alarm. Ethology 104:955–962.Google Scholar
  2. BLAUSTEIN, A. R., and WAKE, D. B. 1990. Declining amphibian populations: A global phenomenon? Trends Ecol. Evol. 5:203–204.Google Scholar
  3. BLAUSTEIN, A. R., and WAKE, D. B. 1995. The puzzle of declining amphibian populations. Sci. Am. 272:52–57.Google Scholar
  4. BURY, R. B., and WHELAN, J.A. 1986. Ecology and management of the bullfrog. U.S. Fish andWildlife Service, Resource Publication 155:1–24.Google Scholar
  5. CHIVERS, D. P., and SMITH, R. J. F. 1994. The role of experience and chemical alarm signalling in predator recognition by fathead minnows, Pimephales promelas. J. Fish. Biol. 44:273–285.Google Scholar
  6. CHIVERS, D. P., KIESECKER, J. M., ANDERSON, M. T., WILDY, E. L., and BLAUSTEIN, A. R. 1996. Avoidance response of a terrestrial salamander (Ambystoma macrodactylum) to chemical alarm cues. J. Chem. Ecol. 22:1709–1716.Google Scholar
  7. CHIVERS, D. P., WISENDEN, B. D., and SMITH, R. J. F. 1996. Damselfly larvae learn to recognize predators from chemical cues in the predator's diet. Anim. Behav. 52:315–320.Google Scholar
  8. CHIVERS, D. P., KIESECKER, J. M., WILDY, E. L., ANDERSON, M. T., and BLAUSTEIN, A. R. 1997. Chemical alarm signalling in terrestrial salamanders: Inter and intraspecific responses. Ethology 103:599–613.Google Scholar
  9. CHIVERS, D. P., and SMITH, R. J. F. 1998. Chemical alarm signalling in aquatic predator-prey systems: A review and prospectus. Écoscience 5:338–352.Google Scholar
  10. CHIVERS, D. P., KIESECKER, J. M., WILDY, E. L., BELDEN, L. K., KATS, L. B., and BLAUSTEIN, A. R. 1999. Avoidance response of post-metamorphic anurans to cues of injured conspecifics and predators. J. Herp. 33:472–476.Google Scholar
  11. DUCEY, P. K., and BRODIE, E. D. Jr. 1991. Evolution of antipredator behaviour: Individual and population variation in a neotropical salamander. Herpetologica 47:89–95.Google Scholar
  12. FLOWERS, M. A., and GRAVES, B. M. 1997. Juvenile toads avoid chemical cues from snake predators. Anim. Behav. 53:641–646.Google Scholar
  13. HEWS, D. K., and BLAUSTEIN, A. R. 1985. An investigation of the alarm response in Bufo boreas and Rana cascadae tadpoles. Behav. Neural Biol. 43:47–57.PubMedGoogle Scholar
  14. KATS, L. B., PETRANKA, J. W., and SIH, A. 1988. Anti-predator defenses and the persistence of amphibian larvae with fishes. Ecology 69:1865–1870.Google Scholar
  15. KATS, L. B., and DILL, L. M. 1998. The scent of death: Chemosensory assessment of predation risk by prey animals: Écoscience 5:361–394.Google Scholar
  16. KIESECKER, J. M., CHIVERS, D. P., and BLAUSTEIN, A. R. 1996. The use of chemical cues in predator recognition by western toad (Bufo boreas) tadpoles. Anim. Behav. 52:1237–1245.Google Scholar
  17. KIESECKER, J. M., and BLAUSTEIN, A. R. 1997a. Population differences in responses of red-legged frog tadpoles (Rana aurora) to introduced bullfrogs. Ecology 78:1752–1760.Google Scholar
  18. KIESECKER, J. M., and BLAUSTEIN, A. R. 1997b. Egg laying behavior influences pathogenic infection of amphibian embryos. Con. Biol. 11:214–220.Google Scholar
  19. KIESECKER, J. M., and BLAUSTEIN, A. R. 1998. Effects of introduced bullfrogs and smallmouth bass on the microhabitat use, growth and survival of native red-legged frogs. Con. Biol. 12:776–787.Google Scholar
  20. KUPFERBERG, S. J. 1997. Bullfrog (Rana catesbeiana) invasion of a California river: The role of larval competition. Ecology 78:1736–1751.Google Scholar
  21. LIMA, S. L., and DILL, L. M. 1990. Behavioral decisions made under the risk of predation: A review and prospectus. Can. J. Zool. 68:619–640.Google Scholar
  22. LUTTERSCHMIDT, W. I., MARVIN, G. A., and HUTCHINSON, V. H. 1994. Alarm responses by a plethodontid salamander (Desmognathus ochrophaeus): Conspecific and heterospecific "Schreckstoff". J. Chem. Ecol. 20:2751–2759.Google Scholar
  23. MATHIS, A., and SMITH, R. J. F. 1993. Fathead minnows, Pimephales promelas, learn to recognize northern pike, Esox lucius, as predators on the basis of chemical stimuli from minnows in the pike's diet. Anim. Behav. 46:645–656.Google Scholar
  24. MATHIS, A., CHIVERS, D. P., and SMITH, R. J. F. 1993. Population differences in responses of fathead minnows (Pimephales promelas) to visual and chemical stimuli from predators. Ethology 93:31–40.Google Scholar
  25. MOYLE, P. B. 1973. Effects of introduced bullfrogs, Rana catesbeiana, on the native frogs of the San Joaquin Valley, California. Copeia 1973:18–22.Google Scholar
  26. NUSSBAUM, R. A., BRODIE, E. D. JR., and STORM, R. M. 1983. Amphibians and reptiles of the Pacific Northwest. Univ. Idaho Press, Moscow, Idaho.Google Scholar
  27. REZNICK, D. A., BRYGA, H., and ENDLER, J. A. 1990. Experimentally induced life-history evolution in a natural population. Nature 346:357–359.Google Scholar
  28. RIECHERT, S. E., and HEDRICK, A. V. 1990. Levels of predation and genetically based antipredator behaviours in the spider, Agelenopsis aperta, Anim. Behav. 40:679–687.Google Scholar
  29. SEGHERS, B. H. 1974. Schooling behavior in the guppy (Poecilia reticulata): An evolutionary response to predation. Evolution 28:486–489.Google Scholar
  30. SIH, A. 1987. Predator and prey lifestyles: An evolutionary and ecological overview, pp. 203–224, in Kerfoot, W. C. and SIH, A. (eds.). Predation: Direct and indirect impacts on aquatic communities. Univ. Press of New England, Hanover.Google Scholar
  31. SIH, A., and KATS, L. B. 1994. Age, experience, and the response of streamside salamander hatchlings to chemical cues from predatory sunfish. Ethology 96:253–259.Google Scholar
  32. SIEGEL, S., and CASTELLAN, N. J. 1988. Nonparametric Statistics for the Behavioral Sciences, 2nd ed. McGraw-Hill, New York.Google Scholar
  33. STEBBINS, R. C., and COHEN, N. W. 1995. A natural history of amphibians. Princeton Univ. Press, Princeton, New Jersey.Google Scholar
  34. WERNER, E. E., WELLBORN, G. A., and MCPEEK, M. A. 1995. Diet composition in post metamorphic bullfrogs and green frogs: Implications for interspecific predation and competition. J. Herp. 29:600–607.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Douglas P. Chivers
    • 1
  • Erica L. Wildy
    • 2
  • Joseph M. Kiesecker
    • 3
  • Andrew R. Blaustein
    • 4
  1. 1.Department of BiologyUniversity of SaskatchewanSaskatoon
  2. 2.Department of Biological SciencesCalifornia State UniversityHayward
  3. 3.Department of BiologyPennsylvania State UniversityUniversity Park
  4. 4.Department of ZoologyOregon State UniversityCorvallis

Personalised recommendations