Skip to main content

Uranium in Phosphorites

Abstract

The uranium concentration in phosphorites on continents and modern seafloor varies from 0.nto n· 102ppm (average 75 ppm). The average uranium concentration is 4–48 ppm in Precambrian and Cambrian deposits, 20–90 ppm in Paleozoic and Jurassic deposits, 40–130 ppm in Late Cretaceous–Paleogene deposits, 30–130 ppm in Neogene deposits, and 30–110 ppm in Quaternary (including Holocene) deposits. On the whole, the variation range is almost similar for phosphorites of different ages. The U/P2O5ratio in phosphorites ranges from less than unity to 24 · 10–4(average 3.2 · 10–4). Major phosphorite deposits of the world with ore reserves of approximately 250 Gt (or 58 Gt P2O5) contain up to 19 Mt of uranium. Uranium is present in phosphorites in the tetra- and hexavalent, i.e., U(IV) and U(VI) forms, and their ratio is highly variable. At the early diagenetic stage of the formation of marine phosphorites in a reductive environment, U(VI) diffuses from the near-bottom water into sediments. It is consequently reduced and precipitated as submicroscopic segregations of uranium minerals (mainly uraninite) that are probably absorbed by phosphatic material. During the subsequent reaction between phosphorites and aerated water and the weathering in a subaerial environment, uranium is partly oxidized and lost. The uranium depletion also occurs during catagenesis owing to a more complete crystallization of calcium phosphate and replacement of nonphosphatic components.

This is a preview of subscription content, access via your institution.

References

  1. Altschuler, Z.S., The Geochemistry of Trace Elements in Marine Phosphorites: Part 1. Characteristic Abundances and Enrichment, Marine Phosphorites (SEPM Spec. Publ.), 1980, no. 29, pp. 19–30.

    Google Scholar 

  2. Altschuler, Z.S., Clarke, R.S., and Young, E.Y., Geochemistry of Uranium in Apatite and Phosphorite, US Geol. Surv. Prof. Pap., 1958, vol. 314-D, pp. 45–90.

    Google Scholar 

  3. Ames, L.L., Some Cation Substitutions during the Formation of Phosphorite from Calcite, Econ. Geol., 1960, vol. 55, no. 2, pp. 354–362.

    Google Scholar 

  4. Anderson, R.T., Lehuray, A.P., Fleisher, M.Q., and Murray, J.W., Uranium Deposition in Saanich Inlet Sediments, Vancouver Island, Geochim. Cosmochim. Acta., 1989, vol. 53, pp. 2205–2213.

    Google Scholar 

  5. Banerjee, D.M., Basu, P.C. and Srivastava, N., Petrology, Mineralogy, Geochemistry, and Origin of Precambrian Aravallian Phosphorite Deposits in Udaipur and Jhabua, India, Econ. Geol., 1980, vol. 75, no. 8, pp. 1181–1189.

    Google Scholar 

  6. Banerjee, D.M., Khan, M.W.Y., Srivastava, N., and Saigul, G.S., Precambrian Phosphorites in the Bijawar Rocks of Hirapur- Bassia Areas, Sagar District, Madhya Pradesh, India, Miner. Deposita, 1982, vol. 17, pp. 349–362.

    Google Scholar 

  7. Barnes, C.E. and Cochran, J.K., Uranium Removal in Oceanic Sediments and the Oceanic Uranium Balance, Earth Planet. Sci. Lett., 1990, vol. 97, pp. 94–101.

    Google Scholar 

  8. Burnett, W.C., Baker, K.B., and Chin, P.A., Uranium-Series and AMS 14C Studies of Modern Phosphate Pellets in Peru Shelf Muds, Mar. Geol., 1998, vol. 80. no. 3/4, pp. 215–230.

    Google Scholar 

  9. Burnett, W.C. and Gomberg, D.N., Uranium Oxidation and Probable Subaerial Weathering of Phosphatized Limestone from the Pourtales Terrace, Sedimentology, 1977, vol. 24, pp. 291–302.

    Google Scholar 

  10. Burnett, W.C., Glenn, C.R., Yeh, C.C., et al., U-Series, 14C, and Stable Isotope Studies of Recent Phosphatic “Protocrusts” from the Peru Margin, Marine Authigenesis: from Global to Microbial (SEPM Spec. Publ.), 2000, no. 66, pp. 163–183.

    Google Scholar 

  11. Burnett, W.C. and Veeh, H.H., Uranium-Series Disequilibrium Studies in Phosphorite Nodules from South America, Geoch. Cosmochim. Acta, 1977, vol. 41, no. 6, pp. 755–764.

    Google Scholar 

  12. Baturin, G.N., Uranium in Mud Solutions of the Southeastern Atlantic, Dokl. Akad. Nauk SSSR, 1971, vol. 198, no. 5, pp. 1186–1188.

    Google Scholar 

  13. Baturin, G.N., Uranium in the Modern Marine Sedimentary Cycle, Geokhimiya, 1973, no. 6, pp. 1362–1372.

    Google Scholar 

  14. Baturin, G.N., Uran v sovremennom morskom osadkoobrazovanii (Uranium in the Modern Marine Sedimentation), Moscow: Atomizdat, 1975.

    Google Scholar 

  15. Baturin, G.N., Fosfority na dne okeanov (Phosphorites on the Ocean Floor), Moscow: Nauka, 1978.

    Google Scholar 

  16. Baturin, G.N., Rudy okeana (Ores of the Ocean), Moscow: Nauka, 1993.

    Google Scholar 

  17. Baturin, G.N. and Dubinchuk, V.T., Modes of Uranium Occurrence in Oceanic Phosphorites, Okeanologiya, 1978, vol. 18, no. 6, pp. 1036–1041.

    Google Scholar 

  18. Baturin, G.N. and Dubinchuk, V.T., Mikrostruktury okeanskikh fosforitov (Microtextures of Oceanic Phosphorites), Moscow: Nauka, 1979.

    Google Scholar 

  19. Baturin, G.N. and Dubinchuk, V.T., Mineralogy of Phosphatic Sands from the Namibian Shelf, Litol. Polezn. Iskop., 1999, no. 6, pp. 632–646.

    Google Scholar 

  20. Baturin, G.N. and Kochenov, A.V., Uranium Content in Oceanic Phosphorites, Litol. Polezn. Iskop., 1974, no. 1, pp. 124–129.

    Google Scholar 

  21. Baturin, G.N., Dubinchuk, V.T., and Kochenov, A.V., Uranium in the Process of Modern Phosphorite Formation, Geokhimiya, 1986, no. 9, pp. 1277–1284.

    Google Scholar 

  22. Baturin, G.N., Kochenov, A.V., and Dubinchuk, V.T., Uranium in Phosphorites from Seamounts of the Pacific Ocean, Litol. Polezn. Iskop., 1982, no. 1, pp. 3–10.

    Google Scholar 

  23. Baturin, G.N., Kochenov, A.V., and Kovaleva, S.A., Some Features of Uranium Distribution in Muds of the Black Sea, Dokl. Akad. Nauk SSSR, 1966, vol. 166, no. 3, pp. 698–701.

    Google Scholar 

  24. Baturin, G.N., Kochenov, A.V., and Senin, Yu.M., Uranium Concentration in Modern Oceanic Sediments in Upwelling Zones, Geokhimiya, 1971, no. 4, pp. 456–462.

    Google Scholar 

  25. Belova, L.N., Gorshkov, A.I., Doinikov, O.A., et al., A New Uranous Phosphate, Dokl. Akad. Nauk, 1996, vol. 349, no. 3, pp. 361–363.

    Google Scholar 

  26. Bliskovskii, V.Z., Kurskite in Phosphorites, Litol. Polezn. Iskop., 1976, no. 3, pp. 75–84.

    Google Scholar 

  27. Bushinskii, G.N., Drevnie fosfority Azii i ikh genesis (Ancient Phosphorites in Asia and Their Genesis), Moscow: Nauka, 1966.

    Google Scholar 

  28. Cathcart, J.B., Uranium in Phosphate Rock, US Geol. Surv. Prof. Paper, 1978, no. 988-A, pp. A1–A6.

    Google Scholar 

  29. Chentsov, I.G., Problem of the Occurrence Mode of Uranium in Phosphorites, At. Energ., 1956, vol. 1, no. 5, p. 113.

    Google Scholar 

  30. Cook, P.J., Petrology and Geochemistry of the Phosphate Deposits of Northwest Queensland, Australia, Econ. Geol., 1972, vol. 67, no. 8, pp. 1193–1213.

    Google Scholar 

  31. Cook, P.J. and O'Brian, G.W., Neogene to Holocene Phosphorite of Australia, Phosphate Deposits of the World, vol. 3: Neogene to Modern Phosphorites, Burnett, W.C. and Riggs, S.R., Eds., Cambridge: Univ. Press, 1990, pp. 98–115.

    Google Scholar 

  32. Dubinchuk, V.T., Kochenov, A.V., Ruzhitskii, V.V., and Meshchankina, V.I., Modes of Exogenous Epigenetic Uranium Mineralization in Sedimentary Rocks (Based on SEM Data), Litol. Polezn. Iskop., 1990, no. 3, pp. 65–72.

    Google Scholar 

  33. Gaspar, L.C., Alguns aspectos geoquimicos sobre fosforites da margem continental Portugues, Diss., Univ. de Aveiro, 1981.

  34. Gassan, A.A., Geological Features and Mineral Composition of Upper Cretaceous Uraniferous Granular Phosphorites of the Palmir Region, Siberia, PhD (Geol.-Mineral.) Dissertation, Leningrad: Lenin. Gorn. Inst., 1983.

    Google Scholar 

  35. Gavshin, V.M., Bobrov, V.N., and Zorkina, L.S., Quantitative Relationships between Uranium and Phosphorus in Phosphorites and Phosphatic Rocks, Litol. Polezn. Iskop., 1974, no. 6, pp. 118–126.

    Google Scholar 

  36. Gulbrandsen, R.A., Chemical Composition of Phosphorites of the Phosphoria Formation, Geoch. Cosmochim. Acta, 1966, vol. 30, pp. 769–778.

    Google Scholar 

  37. Heinrich, E., Mineralogy and Geology of Radioactive Raw Materials, New York, 1958. Translated under the title Mineralogiya i geokhimiya radioaktivnogo mineral'nogo syr'ya, Moscow: Inostrannaya Literatura, 1962.

  38. Howard, P.F. and Hough, M.J., On the Geochemistry and Origin of the D Tree, Wonarah, and Sherrin Creek Phosphorite Deposits of the Georgina Basin, Northern Australia, Econ. Geol., 1979, vol. 74, no. 2, pp. 260–284.

    Google Scholar 

  39. Il'in, A.V., Drevnie fosfatonosnye basseiny (Ancient Phosphate- Bearing Basins), Moscow: Nauka, 1990.

    Google Scholar 

  40. Il'in, A.V. and Volkov, R.I., Geochemistry of Uranium in Vendian-Cambrian Phosphorites, Geokhimiya, 1994, no. 7, pp. 1042–1051.

    Google Scholar 

  41. Karpova, M.I., Sostav i genezis mezozoiskikh fosforitov vostoka Russkoi platformy (The Composition and Genesis of Mesozoic Phosphorites in the Eastern European Platform), Moscow: Nauka, 1982.

    Google Scholar 

  42. Kholodov, V.N., Rare and Radioactive Elements in Phosphorites, Tr. IMGRE, 1963, issue 17, pp. 67–108.

    Google Scholar 

  43. Kholodov, V.N., Osadochnyi rudogenez i metallogeniya vanadiya (Sedimentary Ore Genesis and Metallogeny of Vanadium), Moscow: Nauka, 1973.

    Google Scholar 

  44. Kholodov, V.N. and Bliskovskii, V.Z., Geochemistry of Trace Elements in Phosphate-Bearing Sediments, Litologiya fosforitonosnykh otlozhenii (Lithology of Phosphorite-Bearing Sediments), Moscow: Nauka, 1976.

    Google Scholar 

  45. Kholodov, V.N. and Mineev, D.S., Rare Elements in Phosphorites, Veshchestvennyi sostav fosforitov (Mineral Composition of Phosphorites), Moscow: Nauka, 1979, pp. 46–65.

    Google Scholar 

  46. Kholodov, V.N. and Paul, R.K., The Black Sea: A Geochemical Model of Phosphate Deposition, Litol. Polezn. Iskop., 1995, no. 6, pp. 563–581.

    Google Scholar 

  47. Klinkhammer, G. and Palmer, M.R., Uranium in the Oceans: Where It goes and Why, Geochim. Cosmochim. Acta, 1991, vol. 55, pp. 1799–1806.

    Google Scholar 

  48. Kniewald, G. and Brancia, M., Role of Uranium (V) in Marine Sedimentary Environments: A Geochemical Possibility, Mar. Chem., 1988, vol. 24, pp. 1–12.

    Google Scholar 

  49. Kochenov, A.V., Dubinchuk, V.T., and Germogenova, E.V., Modes of Uranium Occurrence in Phosphatic Remains of Fossil Fish, Sov. Geol., 1973, no. 3, pp. 69–77.

    Google Scholar 

  50. Kochenov, A.V., Korolev, K.G., Dubinchuk, V.T., and Medvedev, Yu.A., Conditions of Uranium Precipitation from Hydrous Solutions (Based on Experimental Data), Geokhimiya, 1977, no. 11, pp. 1711–1716.

    Google Scholar 

  51. Kolodny, Y., Phosphorites, The Sea, New York: Wiley, 1981, vol. 7, pp. 981–1023.

    Google Scholar 

  52. Kolodny, Y. and Kaplan, I.R., Uranium Isotopes in Sea Floor Phosphorites, Geochim. Cosmochim. Acta, 1970, vol. 34, pp. 3–24.

    Google Scholar 

  53. Kolodny, Y. and Kaplan, I.R., Deposition of Uranium in the Sediment and Interstitial Water of an Anoxic Fjord, Proc. Symp. on Hydrogeochemistry and Biogeochemistry, Tokyo, 1973, vol. 1, pp. 418–442.

    Google Scholar 

  54. Langmuir, D., Uranium Solution-Mineral Equilibria at Low Temperatures with Applications to Sedimentary Ore Deposits, Geochim. Cosmochim. Acta, 1978, vol. 42, pp. 547–569.

    Google Scholar 

  55. Levina, S.D., Smilkstyn, A.O., and Karpov, L.N., Radioactivity of Phosphorites, Litologiya fosforitonosnykh otlozhenii (Lithology of Phosphorite-Bearing Sediments), Sokolov, A.S., Ed., Moscow: Nauka, 1976, pp. 148–155.

    Google Scholar 

  56. Lianjun, Y., Qiying, C., Dongxu, Z., et al., The Phosporirtes of China, Beijing: Inst. Geol., 1989.

    Google Scholar 

  57. Lucas, J. and Abbas, M., Uranium in Natural Phosphorites: Syrian Example, Bull. Sci. Geol. Strasbourg, 1989, vol. 42, pp. 223–236.

    Google Scholar 

  58. Makarov, E.S., Crystal Chemistry of Uranium Minerals, Osnovnye cherty geokhimii urana (Main Features of the Geochemistry of Uranium), Vinogradov, A.P., Ed., Moscow: Akad. Nauk SSSR, 1963, pp. 27–45.

    Google Scholar 

  59. Manskaya, S.M. and Drozdova, T.V., Geokhimiya organicheskogo veshchestva (Geochemistry of Organic Matter), Moscow: Nauka, 1964.

    Google Scholar 

  60. Mathews, A. and Nathan, Y., The Decarbonation of Carbonate -Fluor-Apatite (Francolite), Am. Mineral., 1977, vol. 62, no. 5/6, pp. 565–573.

    Google Scholar 

  61. Mazor, E., Notes Concerning the Geochemistry of Phosphorus, Fluorine, Uranium, and Radium in Some Marine Rocks of Israel, Israel J. Earth Sci., 1963, vol. 12, pp. 41–52.

    Google Scholar 

  62. McArthur, J.M., Francolite Geochemistry—Compositional Controls during Formation, Metamorphism, and Weathering, Geochim. Cosmochim. Acta, 1985, vol. 49, no. 1, pp. 23–35.

    Google Scholar 

  63. McArthur, J.M., Benmore, R.A., Coleman, M.L., et al., Stable Isotopic Characterization of Francolite Formation, Earth Planet. Sci. Lett., 1986, vol. 77, no. 1, pp. 20–34.

    Google Scholar 

  64. McConnell, D., Apatite, Its Crystal Chemistry, Mineralogy, Utilization, and Geologic and Biologic Occurrences, New York: Springer, 1973.

    Google Scholar 

  65. McKelvey, V.E., Uranium in Phosphate Rock, US Geol. Surv. Prof. Paper, 1956, no. 300.

  66. McKelvey, V.E., Everhart, D.L., and Garrels, R.M., Origin of Uranium Deposits, Econ. Geol., 1955, part I, pp. 465–533.

  67. Meunier-Christmann, C., Lucas, J., and Albraht, P., Organic Geochemistry of Moroccan Phosphorites and Bituminous Shales, Bull. Sci. Geol. Strasbourg, 1989, vol. 42, pp. 205–222.

    Google Scholar 

  68. Nabil, F., Geochemistry of Phosphorites from the Metladi Deposit, Tunis, Extended Abstracts of PhD (Geol.-Miner.) Dissertation, Moscow: Mosk. Geol.-Razv. Inst., 1992.

    Google Scholar 

  69. Naumov, G.B., Kochenov, N.V., Gerasimovskii, V.I., and Germanov, A.I., Uranium in Sedimentary Rocks, Osnovnye cherty geokhimii urana (Principle Features of the Uranium Geochemistry), Vinogradov, A.P., Ed., Moscow: Akad. Nauk SSSR, 1963, pp. 238–289.

    Google Scholar 

  70. Opredelenie urana lazerno-lyuminestsentnym metodom (Determination of Uranium by the Laser Luminescence Method), Instruction 421-X (Accepted by the Scientific Council on Analytical Methods), Moscow: Ministerstvo Geologii SSSR, 1988.

  71. Parrish, J.T., Ziegler, A.M., and Hampherville, R.G., Upwelling in the Paleozoic Era, Coastal Upwelling—Its Sediment Record, Suess, E. and Thiede, J., Eds., New York: Plenum, 1983, pp. 553–578.

    Google Scholar 

  72. Phosphate Deposits of the World, vol. 1: Proterozoic and Cambrian Phosphorites, Cook, P.D. and Shergold, J.H., Eds., Cambridge: Univ. Press, 1986.

    Google Scholar 

  73. Pokryshkin, V.I., Zakonomernosti razmeshcheniya promyshlennykh mestorozhdenii fosforitov dokembriya i fanerozoya mira (Regularities of the Localization of Precambrian and Phanerozoic Commercial-Grade Phosphorite Deposits in the World), Moscow: Nedra, 1981.

    Google Scholar 

  74. Powell, T.G., Cook, P.J., and McKirdy, D.M., Organic Geochemistry of Phosphorites: Relevance to Petroleum Genesis, AAPG Bull., 1975, vol. 59, no. 4, pp. 618–632.

    Google Scholar 

  75. Price, N.B. and Calvert, S.E., The Geochemistry of Phosphorites from the Namibian Shelf, Chem. Geol., 1978, vol. 23, no. 2, pp. 151–170.

    Google Scholar 

  76. Rozhkova, E.V., Razumnaya, E.G., Serebryakova, M.B., and Shcherbak, O.V., Role of Sorption in the Concentration of Uranium in Sedimentary Rocks, Trudy 2 Mezhdunarodnoi konferentsii po mirnomu ispol'zovaniyu atomnoi energii v Zheneve (Proc. 2nd Int. Conf. on the Peaceful Utilization of Atomic Energy in Geneva), Moscow: Atomizdat, 1959, vol. 8, pp. 300–311.

    Google Scholar 

  77. Serebryakova, M.B. and Razumnaya E.G., Problem of the Occurrence Mode of Uranium in Apatite, Dokl. Akad. Nauk SSSR, 1962, vol. 143, no. 6, pp. 153–156.

    Google Scholar 

  78. Shakhin, D.S., Petrographic Composition and Genesis of Commercial-Grade Phosphorite Deposits in Siberia, Extended Abstracts of DSc (Geol.-Miner.) Dissertation, Moscow: Mosk. Geol-Razv. Inst., 1991.

    Google Scholar 

  79. Sheldon, R.P., Geochemistry of Uranium in Phosphorites and Black Shales of the Phosphoria Formation, US Geol. Surv. Bull., 1959, no. 1084-D.

  80. Smirnov, A.I., Veshchestvennyi sostav i usloviya formirovaniya osnovnykh tipov fosforitov (Mineral Composition and Formation Constraints of Major Phosphorite Types), Moscow: Nedra, 1972.

    Google Scholar 

  81. Sokolov, A.S., Phosphorus in Stratisphere, Dokl. Akad. Nauk, 1995, vol. 344, no. 3, pp. 370–373.

    Google Scholar 

  82. Sokolov, A.S., Evolution of Uranium Mineralization in Phosphorites, Geokhimiya, 1996, no. 11, pp. 1117–1119.

    Google Scholar 

  83. Stephens, N.P. and Carrol, A.R., Salinity Stratification in the Permian Phosphoria Sea: A Proposed Paleomodel, Geology, 1999, vol. 27, no. 10, pp. 899–902.

    Google Scholar 

  84. Strutt, R., On the Distribution of Radium in the Earth's Crust, Proc. R. Soc. London, 1906, Ser. A, no. 78, pp. 150–153.

    Google Scholar 

  85. Strutt, R., The Accumulation of Helium in Geological Time, Proc. R. Soc. London, 1908, Ser. A, no. 81, pp. 272–277.

    Google Scholar 

  86. Thompson, J., Calvert, S.E., Mukherjee, S., Burnett, W.C., and Bremner, J.M., Further Studies of the Nature, Composition, and Ages of Contemporary Phosphorite from the Namibian Shelf, Earth Planet. Sci. Lett., 1984, vol. 69, no. 2, pp. 341–353.

    Google Scholar 

  87. Thomson, J., Wallace, H.E., Colley, S., and Toole, J., Authigenic Uranium in Atlantic Sediments of the Last Glacial Stage—A Diagenetic Phenomenon, Earth Planet. Sci. Lett., 1990, vol. 98, pp. 222–232.

    Google Scholar 

  88. Veeh, H.H., Calvert, S.E., and Price, N.B., Accumulation of Uranium in Sediments and Phosphorites on the South West African Shelf, Mar. Chem., 1974, vol. 2, no. 2, pp. 189–202.

    Google Scholar 

  89. Whittaker, E.J.W., and Muntus, R., Ionic Radii for Use in Geochemistry, Geochim. Cosmochim. Acta, 1970, vol. 34, pp. 945–956.

    Google Scholar 

  90. Zanin, Yu.N., Gilinskaya, L.G., Krasil'nikova, N.A., et al., Typomorphism of Calcium Phosphates in Phosphorites, Geol. Rudn. Mestorozhd., 1985, no. 4, pp. 85–103.

    Google Scholar 

  91. Zanin, Yu.N., Zamirailova, A.G., Fomin, A.N., and Pisareva, G.M., Strontium in the Sedimentary Apatite Structure during Catagenesis, Dokl. Akad. Nauk, 1997, vol. 352, no. 2, pp. 235–237.

    Google Scholar 

  92. Zanin, Yu.N., Zamirailova, A.G., Gilinskaya, L.G., Fomin, A.N., and Kireev, A.D., Uranium in the Sedimentary Apatite during Catagenesis, Geokhimiya, 2000a, no. 5, pp. 502–509.

    Google Scholar 

  93. Zanin, Yu.N., Zamirailova, A.G., and Pisareva, G.M., Cadmium, Vanadium, and Zinc in Phosphorites during Catagenesis, Dokl. Akad. Nauk, 2000b, vol. 374, no. 2, pp. 228–231.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Baturin, G.N., Kochenov, A.V. Uranium in Phosphorites. Lithology and Mineral Resources 36, 303–321 (2001). https://doi.org/10.1023/A:1010406103447

Download citation

Keywords

  • Uranium
  • Cambrian
  • Late Cretaceous
  • Paleogene
  • Phosphorite