Skip to main content
Log in

Bounded Fluctuations and Translation Symmetry Breaking in One-Dimensional Particle Systems

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We present general results for one-dimensional systems of point charges (signed point measures) on the line with a translation invariant distribution μ for which the variance of the total charge in an interval is uniformly bounded (instead of increasing with the interval length). When the charges are restricted to multiples of a common unit, and their average charge density does not vanish, then the boundedness of the variance implies translation-symmetry breaking—in the sense that there exists a function of the charge configuration that is nontrivially periodic under translations—and hence that μ is not “mixing.” Analogous results are formulated also for one dimensional lattice systems under some constraints on the values of the charges at the lattice sites and their averages. The general results apply to one-dimensional Coulomb systems, and to certain spin chains, putting on common grounds different instances of symmetry breaking encountered there.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. C. Brydges and P. A. Martin, Coulomb systems at low density: A review, J. Stat. Phys. 96:1163 (1999). See also Ph. Martin, Sum rules in charged fluids, Rev. Mod. Phys. 60:1075-1127 (1988).

    Google Scholar 

  2. A. Lenard, Exact statistical mechanics of a one-dimensional system with Coulomb forces. III. Statistics of the electric field, J. Math. Phys. 4:533 (1963).

    Google Scholar 

  3. J. L. Lebowitz and E. H. Lieb, The existence of thermodynamics for real matter with Coulomb forces, Phys. Rev. Lett. 22:631 (1969). E. H. Lieb and J. L. Lebowitz, The constitution of matter: Existence of thermodynamics for systems composed of electrons and nuclei, Advances in Math. 9:316 (1972).

    Google Scholar 

  4. M. Aizenman and P. A. Martin, Structure of Gibbs states of one-dimensional Coulomb systems, Comm. Math. Phys. 78:99 (1980).

    Google Scholar 

  5. H. van Beijeren and B. U. Felderhof, Mol. Phys. 38:1179 (1979); Ch. Gruber, Ch. Lugrin, and Ph. A. Martin, J. Stat. Phys. 22:193 (1980); Ph. A. Martin and T. Yalcin, J. Stat. Phys. 22:435 (1980).

    Google Scholar 

  6. J. L. Lebowitz, Phys. Rev. A 72:773 (1983); J. L. Lebowitz in Strongly Coupled Coulomb Systems, G. J. Kalman, J. M. Rommel, and K. Blagoev, eds. (Plenum Press, New York and London, 1998); D. Levesque, J.-J. Weis, and J. L. Lebowitz, Charge fluctuations in the two-dimensional one-component plasma, J. Stat. Phys. 100:209-222 (2000).

    Google Scholar 

  7. M. Gaudin, Gaz coulombien discret à une dimension, J. Physique 34:511 (1973).

    Google Scholar 

  8. H. Kunz, The one-dimensional classical electron gas, Ann. Phys. (N.Y.) 85:303 (1974).

    Google Scholar 

  9. H. J. Brascamp and E. H. Lieb, Some inequalities for Gaussian measures and the long-range order of the one-dimensional plasma, in Functional Integration and Its Applications, A. M. Arthurs, ed. (Oxford Univ. Press, 1975).

  10. Ch. Lugrin and Ph. A. Martin, Functional integration treatment of one-dimensional ionic mixtures, J. Math. Phys. 23:2418 (1982).

    Google Scholar 

  11. B. Jancovici, Exact results for the two-dimensional one-component plasma, Phys. Rev. Lett. 46:386 (1981).

    Google Scholar 

  12. J. Imbrie, Debye screening for jellium and other Coulomb systems, Commun. Math. Phys. 87:515 (1983).

    Google Scholar 

  13. I. Affleck, Exact results on the dimerization transition in SU(n) antiferromagnetic chains, J. Phys. Cond. Matt. 2:405 (1990).

    Google Scholar 

  14. M. Aizenman and B. Nachtergaele, Geometric aspects of quantum spin states, Comm. Math. Phys. 164:17 (1994).

    Google Scholar 

  15. M. T. Batchelor and M. N. Barber, Spin-s quantum chains and Temperley-Lieb algebras, J. Phys. A 23:L15-L21 (1990).

    Google Scholar 

  16. A. Klümper, The spectra of q-state vertex models and related antiferromagnetic quantum spin chains, J. Phys. A 23:809 (1990).

    Google Scholar 

  17. M. Aizenman and J. Fröhlich, States of one-dimensional Coulomb systems as simple examples of 3-vacua and confinement, J. Stat. Phys. 26:247 (1981).

    Google Scholar 

  18. Ch. Maes, A. van Moffaert, and F. Redig, Almost Gibbsian versus weakly Gibbsian measures, Stoch. Proc. and Appl. 79:1-15 (1999).

    Google Scholar 

  19. M. L. Mehta, Random Matrices (Academic Press, New York, 1990), 2nd ed.

    Google Scholar 

  20. J. Beck, Irregularities of distribution. I, Acta Math. 159:1 (1987).

    Google Scholar 

  21. P. Choquard, P. J. Forrester, and E. R. Smith, The two dimensional one component plasma at T=2; The semiperiodic strip, J. Stat. Phys. 33:13 (1983); B. Jancovici and J. L. Lebowitz, Bounded fluctuations and translation symmetry breaking: A solvable model, J. Stat. Phys., this issue.

    Google Scholar 

  22. A. C. D. van Enter, R. Fernandez, and A. D. Sokal, Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory, J. Stat. Phys. 72:879-1167 (1993).

    Google Scholar 

  23. H.-O. Georgii, Gibbs Measures and Phase Transitions (W. De Gruyter, Berlin, 1988).

    Google Scholar 

  24. K. Schmidt, Cocycles of Ergodic Transformation Groups. Lect. Notes in Math., Vol. 1 (MacMillan Co. of India, 1977).

  25. V. Leonov, On the dispersion of time averages of a stationary random process, Theory Probab. Appl. 6:93 (1961).

    Google Scholar 

  26. J. Aaronson and B. Weiss, Remark on tightness of cocycles, (1999) preprint.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aizenman, M., Goldstein, S. & Lebowitz, J.L. Bounded Fluctuations and Translation Symmetry Breaking in One-Dimensional Particle Systems. Journal of Statistical Physics 103, 601–618 (2001). https://doi.org/10.1023/A:1010397401128

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010397401128

Navigation