Skip to main content
Log in

Universality in Quantum Hall Systems: Coset Construction of Incompressible States

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Incompressible Quantum Hall fluids (QHF's) can be described in the scaling limit by three-dimensional topological field theories. Thanks to the correspondence between three-dimensional topological field theories and two dimensional chiral conformal field theories (CCFT's), we propose to study QHF's from the point of view of CCFT's. We derive consistency conditions and stability criteria for those CCFT's that can be expected to describe a QHF. A general algorithm is presented which uses simple currents to construct interesting examples of such CCFT's. It generalizes the description of QHF's in terms of Quantum Hall lattices. Explicit examples, based on the coset construction, provide candidates for the description of Quantum Hall fluids with Hall conductivity σH=1/2(e2/h), 1/4(e2/h), 3/5(e2/h), (e2/h),... .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. K. von Klitzing, G. Dorda, and N. Pepper, New method for high-accuracy determination of the fine structure constant based on quantized Hall resistance, Phys. Rev. Lett. 45:484 (1980).

    Google Scholar 

  2. D. C. Tsui, H. L. Störmer, and A. C. Gossard, Two-dimensional magnetotransport in the Extreme Quantum Limit, Phys. Rev. B 48:1559 (1982).

    Google Scholar 

  3. R. B. Laughlin, Quantized Hall conductivity in two dimensions, Phys. Rev. B 23:5632 (1981).

    Google Scholar 

  4. R. B. Laughlin, Anomalous Quantum Hall effect: An incompressible Quantum Fluid with fractionally charged excitations, Phys. Rev. Lett. 50:1395 (1983); Quantized motion of three two-dimensional electrons in a strong magnetic field, Phys. Rev. B 27:3383 (1983); Primitive and composite ground states in the factional Quantum Hall effect, Surf. Sci. 142:163 (1984).

    Google Scholar 

  5. D. Arovas, J. R. Schrieffer, and F. Wilczek, Fractional statistics and the Quantum Hall effect, Phys. Rev. Lett. 53:722 (1984).

    Google Scholar 

  6. R. E. Prange and S. M. Girvin (eds.), The Quantum Hall Effect, Graduate Texts in Contemporary Physics (Springer Verlag, New York 1990).

    Google Scholar 

  7. B. I. Halperin, Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential, Phys. Rev. B 25:2185 (1982).

    Google Scholar 

  8. M. Büttiker, Absence of backscattering in the quantum Hall effect in multiprobe conductors, Phys. Rev. B 38:9375 (1988).

    Google Scholar 

  9. C. W. Beenaker, Edge channels for the fractional Quantum Hall effect, Phys. Rev. Lett. 64:216 (1990).

    Google Scholar 

  10. A. H. Macdonald, Edge states in the fractional Quantum Hall regime, Phys. Rev. Lett. 64:220 (1990); F. D. M. Haldane, Edge states and boundary fluctuations in the Quantum Hall fluid, Bull. Am. Phys. Soc. 35:254 (1990).

    Google Scholar 

  11. X. G. Wen, Vacuum degeneracy of chiral spin states in compactified space, Phys. Rev. B 40:7387 (1989); Topological orders in rigid states, Int. J. Mod. Phys. B 4:239 (1990); Chiral Luttinger liquid and the edge excitations in the fractional quantum Hall states, Phys. Rev. B 41:12838 (1990).

    Google Scholar 

  12. J. Fröhlich and T. Kerler, Universality in Quantum Hall systems, Nucl. Phys. B 354:369 (1991).

    Google Scholar 

  13. M. Stone, Vertex operators in the Quantum Hall effect, Int. J. Mod. Phys. B 5:509 (1991); A. V. Balatsky and M. Stone, Vertex operators and spinon edge excitations in the spin-singlet quantum Hall effect, Phys. Rev. B 43:8038 (1991).

    Google Scholar 

  14. J. Fröhlich and A. Zee, Large scale physics of the Quantum Hall fluid, Nucl. Phys. B 364:517 (1991).

    Google Scholar 

  15. X. G. Wen, Gapless boundary excitations in quantum Hall states and in the chiral spin states, Phys. Rev. B 43:11025 (1991).

    Google Scholar 

  16. D. Bigatti and L. Susskind, TASI Lectures on the Holographic Principle, preprint hep-th/0002044, and references given there.

  17. E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121:351 (1989).

    Google Scholar 

  18. J. Frölich and C. King, Two-dimensional conformal field theory and three-dimensional topology, Int. J. Mod. Phys. A 4:5328 (1989).

    Google Scholar 

  19. D. H. Lee and S. C. Zhang, Collective excitations in the Ginzburg-Landau theory of the fractional Quantum Hall effect, Phys. Rev. Lett. 66:1220 (1991).

    Google Scholar 

  20. R. H. Morf and N. d'Ambrumenil, Stability and effective masses of composite fermions in the first and second Landau level, Phys. Rev. Lett. 74:5116 (1995); R. H. Morf, Transition from Quantum Hall to compressible states in the second Landau level: New light on the v=5/2 enigma, Phys. Rev. Lett. 80:1505 (1998).

    Google Scholar 

  21. J. Fröhlich and E. Thiran, Integral quadratic forms, Kac-Moody algebras, and fractional Quantum Hall effect. An ADE-\({\mathcal{O}}\) classification, J. Stat. Phys. 76:209 (1994).

    Google Scholar 

  22. J. Fröhlich, T. Kerler, U. M. Studer, and E. Thiran, Structuring the Set of Incompressible Quantum Hall Fluids, preprint ETH-TH/95-5.

  23. J. Fröhlich, U. M. Studer, and E. Thiran, A classification of Quantum Hall fluids, J. Stat. Phys. 86:821 (1997).

    Google Scholar 

  24. J. K. Jain, Composite-Fermion approach for the fractional Quantum Hall effect, Phys. Rev. Lett. 63:199 (1989); Incompressible Quantum Hall states, Phys. Rev. B 40:8079 (1989).

    Google Scholar 

  25. G. Moore and N. Read, Nonabelions in the fractional Quantum Hall effect, Nucl. Phys. B 360:362 (1991).

    Google Scholar 

  26. M. Milovanovic and N. Read, Edge excitations of paired fractional Quantum Hall states, Phys. Rev. B 53:13559 (1996).

    Google Scholar 

  27. K. Bardakçi and M. B. Halpern, New dual quark models, Phys. Rev. D 3:2493 (1971).

    Google Scholar 

  28. P. Goddard, A. Kent, and D. I. Olive, Virasoro algebras and coset space models, Phys. Lett. B 152:88 (1985).

    Google Scholar 

  29. A. Cappelli, L. S. Georgiev, and I. T. Todorov, A unified conformal field theory description of paired Quantum Hall states, Commun. Math. Phys. 205:657 (1999).

    Google Scholar 

  30. D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Quantized Hall conductance in a two-dimensional periodic potential, Phys. Rev. Lett. 49:405 (1982).

    Google Scholar 

  31. J. E. Avron and R. Seiler, Quantization of the Hall conductance for general, multiparticle Schrödinger Hamiltonians, Phys. Rev. Lett. 54:259 (1985).

    Google Scholar 

  32. E. Fradkin, Field Theories of Condensed Matter Systems, Frontiers in Physics, Vol. 82 (Addison-Wesley, Redwood City, 1991).

    Google Scholar 

  33. J. Belissard, in Localization in Disordered Systems, W. Weller and P. Ziesche, eds. (Teubner, Leipzig, 1988), Teubner Physics Text, No. 165; Operator Algebras and Applications, Lecture Notes, Vol. 136, D. E. Evans and M. Takesaki, eds. (London Mathematical Society, Cambridge, 1988), Vol. 2, p. 49.

    Google Scholar 

  34. J. E. Avron, R. Seiler, and B. Simon, Homotopy and quantization in condensed matter physics, Phys. Rev. Lett. 51:51 (1983).

    Google Scholar 

  35. M. Aizenman and G. M. Graf, Localization bounds for an electron gas, J. Phys. A 31:6783 (1998).

    Google Scholar 

  36. J. Fröhlich, G. M. Graf, and J. Walcher, On the extended nature of edge states of Quantum Hall Hamiltonians, Ann. Henri Poincaré 1:405 (2000).

    Google Scholar 

  37. N. Macris, P. A. Martin, J. V. Pule, On edge states in semi-infinite Quantum Hall systems, J. Phys. A 32:1985 (1998).

    Google Scholar 

  38. S. De Bièvre and J. V. Pule, Propagating edge states for a magnetic Hamiltonian, Math. Phys. Electr. J. 5 (1999).

  39. A. Yu. Alekseev, V. V. Cheianov, and J. Fröhlich, Comparing conductance quantization in quantum wires and Quantum Hall systems, Phys. Rev. B 54:817320 (1996).

    Google Scholar 

  40. J. Fuchs, A. N. Schellekens, and C. Schweigert, The resolution of field identification fixed points in diagonal coset theories, Nucl. Phys. B 461:371 (1996).

    Google Scholar 

  41. S. Deser, R. Jackiw, and S. Templeton, Topologically massive gauge theories, Ann. Phys. 140:372 (1982).

    Google Scholar 

  42. R. Jackiw, in Current Algebra and Anomalies (Princeton University Press, 1972).

  43. G. Felder, J. Fröhlich, and G. Keller, On the structure of unitary conformal field theory II: Representation theoretic approach, Commun. Math. Phys. 130:1 (1990).

    Google Scholar 

  44. S. Elitzur, G. Moore, A. Schwimmer, and N. Seiberg, Remarks on the canonical quantization of the Chern–Simons–Witten theory, Nucl. Phys. B 326:108 (1989).

    Google Scholar 

  45. M. Flohr, Logarithmic conformal field theory and Seiberg-Witten models, Phys. Lett. B 444:179 (1998).

    Google Scholar 

  46. G. Sierra, Conformal Field Theory and the Exact Solution of the BCS Hamiltonian, preprint hep-th/9911078.

  47. A. N. Schellekens and S. Yankielowicz, Simple currents, modular invariants, and fixed points, Int. J. Mod. Phys. A 5:2903 (1990).

    Google Scholar 

  48. L. Saminadayar, D. C. Glattli, Y. Jin, and B. Etienne, Observation of the e/3 fractionally charged Laughlin quasiparticles, Phys. Rev. Lett. 79:2526 (1997).

    Google Scholar 

  49. R. de Picciotto, M. Reznikov, M. Heiblum, V. Umansky, G. Bunin, and D. Mahalu, Direct observation of a fractional charge, Nature 389:162 (1997); M. Reznikov, R. de Picciotto, T. G. Griffiths, M. Heiblum, and V. Umansky, Observation of quasiparticles with one-fifth of an electron's charge, Nature 399:238 (1999).

    Google Scholar 

  50. L. Birke, J. Fuchs, and C. Schweigert, Symmetry Breaking Boundary Conditions and WZW Orbifolds, preprint hep-th/9905038, to appear in Adv. Theor. Math. Phys..

  51. P. Goddard, A. Kent, and D. I. Olive, Unitary representations of the Virasoro and super Virasoro algebras, Commun. Math. Phys. 103:105 (1986).

    Google Scholar 

  52. G. Felder, K. Gawedzki, and A. Kupiainen, Coset construction from functional integral, Nucl. Phys. B 320:625 (1989).

    Google Scholar 

  53. A. N. Schellekens and S. Yankielowicz, Field identification fixed points in the coset construction, Nucl. Phys. B 334:67 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fröhlich, J., Pedrini, B., Schweigert, C. et al. Universality in Quantum Hall Systems: Coset Construction of Incompressible States. Journal of Statistical Physics 103, 527–567 (2001). https://doi.org/10.1023/A:1010389232079

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010389232079

Navigation