Skip to main content
Log in

Effect of Copper on the Oxidation Behavior of Ti–48Al–2Cr–2Nb

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Titanium-aluminide intermetallic alloys are candidate materials for some components in aerospace gas-turbine engines. Oxidation resistance and suitable joining techniques are two critical factors limiting the application of these materials. Transient-liquid-phase (TLP) bonding has been used successfully to join gamma TiAl-base alloys, but results in small amounts of copper being introduced into the alloy near the joint and this change in composition can affect oxidation resistance. The results of this investigation show that large copper additions (>2 at.%) to Ti–48Al–2Nb–2Cr result in the formation of copper-rich second phases, which can degrade oxidation resistance. On the other hand, smaller amounts of copper (1–2 at.%) improve the oxidation resistance of the alloy. Fortunately, the amount of copper in the alloy after completion of a successful TLP bond is relatively low (<1 at.%), so that the oxidation resistance of a TLP joint should be at least as good as that of the base alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. C. Huang and J. C. Chesnut, in Intermetallic Compounds: Principles and Practice, Vol. 2, J. H. Westbrook and R. L. Fleischer, eds. (Wiley, New York, 1994), pp. 73–90.

    Google Scholar 

  2. Y.-W. Kim, J. Mater. 46, 30 (1994).

    Google Scholar 

  3. G. E. Sheward, High Temperature Brazing in Controlled Atmospheres (Pergamon Press, Oxford, 1985).

    Google Scholar 

  4. D. S. Duvall, W. A. Owczarski, and D. F. Paulonis, Welding J. 53, 203 (1974).

    Google Scholar 

  5. W. A. Owczarski, in Physical Metallurgy of Metal Joining, R. Kossowsky and M. E. Glicksman, eds. (Metallurgical Society of AIME, Warrendale, OH, 1980), pp. 166–190.

    Google Scholar 

  6. K. L. Luthra, Oxid. Met. 36, 475 (1991).

    Google Scholar 

  7. A. Rahmel and P. J. Spencer, Oxid. Met. 35, 53 (1991).

    Google Scholar 

  8. X. L. Li, R. Hillel, F. Teyssandier, S. K. Choi, and F. J. J. Van Loo, Acta Metall. Mater. 40, 3149 (1992).

    Google Scholar 

  9. M. Gross, V. Kolarik, and A. Rahmel, Oxid. Met. 48, 171 (1997).

    Google Scholar 

  10. G. Welsch and A. I. Kahveci, in Oxidation of High-Temperature Intermetallics, T. Grobstein and J. Doychak, eds. (The Minerals, Metals and Materials Society, Warrendale, OH, 1989), pp. 207–218.

    Google Scholar 

  11. G. H. Meier and F. S. Pettit, Mater. Sci. Eng. A153, 548 (1992).

    Google Scholar 

  12. F. Wang, Z. Tang, and W. Wu, Oxid. Met. 48, 381 (1997).

    Google Scholar 

  13. H. Anada, Oxid. Met. 45, 197 (1996).

    Google Scholar 

  14. M. F. Stroosnijder, N. Zheng, W. J. Quadakkers, R. Hofman, A. Gil, and F. Lanza, Oxid. Met. 46, 19 (1996).

    Google Scholar 

  15. M. P. Brady, B. Gleeson, and I. G. Wright, JOM 52, 16 (2000).

    Google Scholar 

  16. J. W. Fergus, Oxid. Met. 48, 201 (1997).

    Google Scholar 

  17. R. U. Vaidya, Y. S. Park, J. Zhe, G. T. Gray, III, and D. P. Butt, Oxid. Met. 50, 215 (1997).

    Google Scholar 

  18. M. Schmitz-Niederau and M. Schütze, Oxid. Met. 52, 225 (1999).

    Google Scholar 

  19. S. Becker, A. Rahmel, M. Schorr, and M. Schütze, Oxid. Met. 38, 425 (1992).

    Google Scholar 

  20. N. Zheng, W. J. Quadakkers, A. Gil, and H. Nickel, Oxid. Met. 44, 447 (1995).

    Google Scholar 

  21. V. A. C. Haanappel, R. Hofman, J. D. Sunderkötter, and W. Glatz, Oxid. Met. 48, 263 (1997).

    Google Scholar 

  22. V. Shemet, A. K. Tyagi, J. S. Becker, P. Lersch, L. Singheiser, and W. J. Quadakkers, Oxid. Met. 53, 211 (2000).

    Google Scholar 

  23. C. Lang and M. Schütze, Oxid. Met. 46, 255 (1996).

    Google Scholar 

  24. U. Figge, A. Elschner, N. Zheng, H. Schuster, and W. J. Quadakkers, Fresenius J. Anal. Chem. 346, 75 (1993).

    Google Scholar 

  25. A. Takasaki, K. Ojima, Y. Taneda, T. Hoshiya, and A. Mitsuhashi, J. Mater. Sci. 28, 1067 (1993).

    Google Scholar 

  26. D. W. McKee and S. C. Huang, Corrosion Sci. 33, 1899 (1992).

    Google Scholar 

  27. P. Pérez, J. A. Jiménez, G. Frommeyer, and P. Adeva, Oxid. Met. 53, 99 (2000).

    Google Scholar 

  28. Y. Umakoshi, M. Yamaguchi, T. Sakagami, and T. Yamane, J. Mater. Sci. 24, 1599 (1989).

    Google Scholar 

  29. K. Maki, M. Shioda, M. Sayashi, T. Shimizu, and S. Isobe, Mater. Sci. Eng. A153, 591 (1992).

    Google Scholar 

  30. S. A. Kekare and P. B. Aswath, J. Mater. Sci. 32, 2485 (1997).

    Google Scholar 

  31. J. E. Payne and P. D. Desai, Properties of Intermetallic Alloys, Vol. 1. Aluminides (Purdue University, West Lafayette, IN, 1994), p. 15.55.

    Google Scholar 

  32. P. Kofstad, High-Temperature Oxidation of Metals (Wiley, New York, 1996), p. 175.

    Google Scholar 

  33. C. S. Giggins and F. S. Pettit, J. Electrochem. Soc. 118, 1782 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dang, B., Fergus, J.W., Gale, W.F. et al. Effect of Copper on the Oxidation Behavior of Ti–48Al–2Cr–2Nb. Oxidation of Metals 56, 15–32 (2001). https://doi.org/10.1023/A:1010387218164

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010387218164

Navigation