Skip to main content
Log in

Thermodynamic Limit for Polydisperse Fluids

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We examine the thermodynamic limit of fluids of hard core particles that are polydisperse in size and shape. In addition, particles may interact magnetically. Free energy of such systems is a random variable because it depends on the choice of particles. We prove that the thermodynamic limit exists with probability 1, and is independent of the choice of particles. Our proof applies to polydisperse hard-sphere fluids, colloids and ferrofluids. The existence of a thermodynamic limit implies system shape and size independence of thermodynamic properties of a system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. Ruelle, Helv. Phys. Acta 36:183 (1963); D. Ruelle, Statistical Mechanics (Benjamin, 1969)

    Google Scholar 

  2. M. E. Fisher, Arch. Rat. Mech. Anal. 17:377 (1964).

    Google Scholar 

  3. E. H. Lieb, Rev. Mod. Phys. 48:553 (1976).

    Google Scholar 

  4. R. B. Griffiths, Phys. Rev. 176:655 (1968).

    Google Scholar 

  5. S. Banerjee, R. B. Griffiths, and M. Widom, J. Stat. Phys. 93:109 (1998).

    Google Scholar 

  6. E. Dickinson, J. C. S. Faraday II 76:1458 (1980).

    Google Scholar 

  7. E. R. Smith and J. S. Rowlinson, J. C. S. Faraday II 76:1468 (1980).

    Google Scholar 

  8. D. A. Kofke and P. G. Bolhuis, Phys. Rev. E 59:618 (1999); Phys. Rev. E 54:634 (1996).

    Google Scholar 

  9. P. Bartlett, J. Phys. Cond. Matt. 12:A275 (2000).

    Google Scholar 

  10. L. Blum and G. Stell, J. Chem. Phys. 70:5751 (1979); 72:2212 (1980).

    Google Scholar 

  11. A. Vrij, J. Chem. Phys. 71:3267 (1979).

    Google Scholar 

  12. W. L. Griffith, R. Triolo, and A. L. Compere, Phys. Rev. A 33:2197 (1986).

    Google Scholar 

  13. J. J. Salacuse and G. Stell, J. Chem. Phys. 77:3714 (1982).

    Google Scholar 

  14. M. A. Akcoglu and J. Krengel, J. reine angew. Math. 323:53 (1981).

    Google Scholar 

  15. R. B. Griffiths and J. L. Lebowitz, J. Math. Phys. 9:1284 (1968).

    Google Scholar 

  16. A. C. D. van Enter and J. L. van Hemmen, J. Stat. Phys. 32:141 (1983).

    Google Scholar 

  17. S. G. Rosa, Jr., J. Phys. A 15:L51 (1982).

    Google Scholar 

  18. L. Chayes, Private Communication (1999).

  19. J. L. van Hemmen and A. Suto, J. Physique 45:1277 (1984).

    Google Scholar 

  20. F. Koukiou, Europhys. Lett. 17:669 (1992).

    Google Scholar 

  21. M. Serva and G. Paladin, Phys. Rev. Lett. 70:105 (1993).

    Google Scholar 

  22. P. Billingsley, Probability and Measure, 3rd ed. (Wiley-Interscience, 1995).

  23. R. E. Rosensweig, Ferrohydrodynamics (Cambridge, 1985).

  24. W. Luo, S. R. Nagel, T. F. Rosenbaum, and R. E. Rosensweig, Phys. Rev. Lett. 67:2721 (1991).

    Google Scholar 

  25. D. D. Awschalom et al., Phys. Rev. Lett. 68:3092 (1992).

    Google Scholar 

  26. H. Falk, Am. J. Phys. 38:858 (1970).

    Google Scholar 

  27. W. F. Brown, Magnetostatic Principles in Ferromagnetism (North-Holland, Amsterdam, 1962).

    Google Scholar 

  28. N. G. van Kampen, in Essays in Theoretical Physics, W. E. Parry, ed. (Pergamon, Oxford, 1984), p. 303.

    Google Scholar 

  29. W. Schaertl and H. Sillescu, J. Stat. Phys. 77:1007 (1994).

    Google Scholar 

  30. G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities (Cambridge University Press, 1964), p. 91.

  31. C. L. Chien, J. Appl. Phys. 69:5267 (1991).

    Google Scholar 

  32. J. Tejada, Xixiang Zhang, E. Kroll, X. Bohigas, and R. F. Ziolo, J. Appl. Phys. 87:8008 (2000).

    Google Scholar 

  33. J. M. Mendez-Alvarez, M. Chavez-Paez, B. D. Aguanno, and R. Klein, Physica A 220:173 (1995).

    Google Scholar 

  34. A. K. Arora and B. V. R Tata, Adv. Colloid Interface Sci. 78:49 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banerjee, S., Griffiths, R.B. & Widom, M. Thermodynamic Limit for Polydisperse Fluids. Journal of Statistical Physics 104, 725–752 (2001). https://doi.org/10.1023/A:1010380705975

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010380705975

Navigation