Skip to main content
Log in

Diffusion Cells and Chemical Failure of MCrAlY Bond Coats in Thermal-Barrier Coating Systems

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

It is proposed that bond coats in thermal-barrier coating (TBC) systems, particularly those deposited by plasma spraying, can contain regions which are diffusionally isolated from the bulk of the coating. This can arise through the internal formation of alumina layers as a consequence of the ingress of molecular oxygen into the relatively porous structure. Such isolated regions, termed diffusion cells, will experience enhanced depletion of aluminum as a result of the continued thickening of the alumina layer at their surface. This process has been demonstrated for a CoNiCrAlY bond coat after oxidation in air at 1100°C. A consequence of this enhanced depletion is that chemical failure will occur sooner in diffusion cells and voluminous breakaway oxides will form above them at the interface of the bond coat and the ceramic top coat. The associated spatial variation in oxidation and displacement rates across the surface of the bond coat are expected to aid delamination of the outer ceramic layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. Nicholls, J. Minerals Met. Mater. Soc. 52, 28 (2000).

    Google Scholar 

  2. D. J. Wortman, B. A. Nagaraj, and E. C. Dunderstadt, Mater. Sci. Eng. A121, 433 (1989).

    Google Scholar 

  3. J. T. Demasi-Marcin, K. D. Scheffler, and S. Bose, J. Eng. Gas Turbines Power 112, 521 (1990).

    Google Scholar 

  4. A. H. Bartlett and R. D. Maschio, J. Amer. Ceram. Soc. 78, 1018 (1995).

    Google Scholar 

  5. J. A. Haynes, E. D. Rigney, M. K. Ferber, and W. D. Porter, Surf. Coat. Technol. 86–87, 102 (1996).

    Google Scholar 

  6. M. D. Thouless, H. M. Jensen, and E. G. Liniger, Proc. R. Soc. London A447, 271 (1994).

    Google Scholar 

  7. J. W. Hutchinson and Z. Suo, Advan. Appl. Mech. 29, 63 (1992).

    Google Scholar 

  8. Sung Ryul Choi, J. W. Hutchinson, and A. G. Evans, Mech. Mater. 31, 431 (1999).

    Google Scholar 

  9. V. Sergo and D. R. Clarke, J. Amer. Ceram. Soc. 81, 3237 (1998).

  10. J. S. Wang and A. G. Evans, Acta Mater. 47, 699 (1999).

    Google Scholar 

  11. P. Niranatlumpong, Ph. D. Thesis, The University of Birmingham, Birmingham, U.K., 2000.

  12. P. Niranatlumpong, C. B. Ponton, and H. E. Evans, Oxid. Met. 53, 241 (2000).

    Google Scholar 

  13. E. A. G. Shillington and D. R. Clarke, Acta. Mater. 47, 1297 (1999).

    Google Scholar 

  14. H. E. Evans, A. T. Donaldson, and T. C. Gilmour, Oxid. Met. 52, 379 (1999).

    Google Scholar 

  15. C. S. Giggins and F. S. Pettit, J. Electrochem. Soc. 118, 1782 (1971).

    Google Scholar 

  16. J. P. Wilber, M. J. Bennett, and J. R. Nicholls, Mater. High Temp. 17, 125 (2000).

    Google Scholar 

  17. F. S. Pettit, private communication (1999).

  18. D. P. Whittle, Corros. Sci. 12, 869 (1972).

    Google Scholar 

  19. H. C. Cowen and S. J. Webster, Corrosion of Steels in CO2 (British Nuclear Energy Society, London, 1974), p. 349.

    Google Scholar 

  20. H. Hindum and D. P. Whittle, Oxid. Met. 18, 245 (1983).

    Google Scholar 

  21. J. A. Nesbitt and R. W. Heckel, Metall. Trans. 18A, 2075 (1987).

    Google Scholar 

  22. G. W. Roper and D. P. Whittle, Met. Sci. 15, 148 (1981).

    Google Scholar 

  23. W. J. Quadakkers, J. Jedlinski, K. Schmidt, M. Krasovec, G. Borchardt, and H. Nickel, Appl. Surf. Sci. 47, 261 (1991).

    Google Scholar 

  24. M. P. Taylor, P. Niranatlumpong, H. E. Evans, and C. B. Ponton, Mater. High Temp. 17, 219 (2000).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, H.E., Taylor, M.P. Diffusion Cells and Chemical Failure of MCrAlY Bond Coats in Thermal-Barrier Coating Systems. Oxidation of Metals 55, 17–34 (2001). https://doi.org/10.1023/A:1010369024142

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010369024142

Navigation