Skip to main content
Log in

Morphological Evolution of TiO2 Scale Formed on Various 1D and 2D Geometries of Titanium

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The purpose of this study is to experimentally quantify the multidimensional growth characteristics of the oxide scale formed on commercially pure titanium at 700°C in flowing air. The geometries considered herein had characteristic dimensions that were appropriately sized to match the thickness of the oxide scale and were fabricated into shapes of solid and hollow cylinders and external and internal wedges. Scanning-electron microscopy (SEM) image analysis was used to measure the oxide-layer thickness and the Pilling–Bedworth ratio (PBR) as a function of time. An effective diffusion coefficient was determined from one-dimensional planar oxide-thickness data and experimentally obtained PBR values served as the necessary input to a solid-state diffusion model, which was modified to account for the volumetric expansion of the oxide. The model results demonstrate the competing influences of oxide expansion and curvature effects. In addition, the predictive capability of the model, for the case of a solid cylinder, was shown to underpredict experimental results, whereas, scale growth on the inner surface of a hollow cylinder was overpredicted. The differences are attributed primarily to an effective diffusion coefficient that varies with the scale morphology. An oxide layer grown on an outside surface of a solid cylinder or an external wedge was found to have a structure similar to one-dimensional planar-oxide growth. On the contrary, scale developed on the inside surface of a hollow cylinder or an internal wedge was observed to be more compact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Donachie, Titanium and Titanium Alloys: Source Book (ASM, Metals Park, Ohio, 1982).

    Google Scholar 

  2. E. Gulbransen and K. Andrew, Trans. Amer. Inst. Mining Metall. Eng. 185, 742 (1949).

    Google Scholar 

  3. M. Davies and C. Birchenall, J. Met. 3, 877 (1951).

    Google Scholar 

  4. P. Morton and W. Baldwin, Trans. Amer. Soc. Met. 44, 1004 (1952).

    Google Scholar 

  5. A. Jenkins, J. Inst. Met. 82, 213 (1953).

    Google Scholar 

  6. A. Jenkins, J. Inst. Met. 84, 1 (1955).

    Google Scholar 

  7. G. Wallwork and A. Jenkins, J. Electrochem. Soc. 106, 10 (1959).

    Google Scholar 

  8. P. Kofstad, K. Hauffe, and H. Kjöllesdal, Acta Chem. Scand. 12, 239 (1958).

    Google Scholar 

  9. P. Kofstad, P. Anderson, and O. Krudtaa, J. Less-Common Met. 3, 89 (1961).

    Google Scholar 

  10. P. Kofstad, High-Temperature Oxidation of Metals (Wiley, New York, 1966).

    Google Scholar 

  11. J. Stringer, Acta Metall. 8, 758 (1960).

    Google Scholar 

  12. J. Stringer, J. Less-Common Met. 6, 207 (1964).

    Google Scholar 

  13. M. Déchamps, R. Feldman, and P. Lehr, in Titanium and Titanium Alloy, Vol. 2, J. Williams and A. Belov, eds. (Plenum, New York, 1976), pp. 1045–1056.

    Google Scholar 

  14. J. Unnam, R. Shenoy, and R. Clark, Oxid. Met. 26, 231 (1986).

    Google Scholar 

  15. J. Lopes-Gomes and A. Huntz, Oxid. Met. 14, 249 (1980).

    Google Scholar 

  16. S. Andersson, B. Collén, U. Kuylenstierna, and A. Magnéli, Acta Chem. Scand. 11, 1641 (1957).

    Google Scholar 

  17. G. Bertrand, K. Jarraya, and J. Chaix, Oxid. Met. 21, 1 (1983).

    Google Scholar 

  18. D. Lagoudas and Z. Ding, Intern. J. Eng. Sci. 36, 367 (1998).

    Google Scholar 

  19. M. Castelli and J. Gayda, Reliability Stress Analysis and Fatigue Prevention DE-55 ASME, pp. 213–221 (1993).

  20. J. Gyda and T. Gabb, Intern. J. Fatigue, pp. 14–20 (1992).

  21. P. Entchev, D. Lagoudas, and J. Slattery, Intern. J. Eng. Sci., submitted (1999).

  22. C. Coddet, J. Chretien, and G. Béranger, in Titanium and Titanium Alloys, Vol. 2, J. Williams and A. Belov, eds. (Plenum, New York, 1976), pp. 1097–1105.

    Google Scholar 

  23. H. Rode, D. Orlicki, and V. Hlavacek, AIChE J. 41, 1235 (1995).

    Google Scholar 

  24. D. Lagoudas, X. Ma, D. Miller, and D. Allen, Intern. J. Eng. Sci. 33, 2327 (1995).

    Google Scholar 

  25. G. Samsonov, The Oxide Handbook, 2nd edn. (Plenum, New York, 1982).

    Google Scholar 

  26. N. Pilling and R. Bedworth, J. Inst. Met. 29, 525 (1923).

    Google Scholar 

  27. T. Hurlen, Acta Chem. Scand. 13, 365 (1959).

    Google Scholar 

  28. E. A. Garcia, Met. Corros. Ind. 638, 319 (1978).

    Google Scholar 

  29. I. Vaquila, M. Passeggi Jr, and J. Ferrón, Appl. Surface Sci. 93, 247 (1996).

    Google Scholar 

  30. Y. Mizuno, A. Tanaka, Y. Takakuwa, F. Ishida, K. Takahiro, H. Tonda, K. Ishikawa, T. Takano, T. Ikeuchi, T. Okada, S. Yamaguchi, and T. Homma, Mater. High Temp. 17, 13–21 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imbrie, P.K., Lagoudas, D.C. Morphological Evolution of TiO2 Scale Formed on Various 1D and 2D Geometries of Titanium. Oxidation of Metals 55, 359–399 (2001). https://doi.org/10.1023/A:1010368412822

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010368412822

Navigation