Skip to main content
Log in

Numerical Study of Cloud Effects on Tropospheric Ozone

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

An elaborate cloud chemistry box model hasdeveloped in which gaseous-phase photochemistry iscoupled with aqueous-phase chemistry to investigate thevariation of ozone concentration and its distributionfeatures above and below cloud, and in its upper andlower part, with results compared to observations. Thecloud chemistry model is composed of three parts:gaseous-phase chemistry, aqueous-phase chemistry, andscavenging of soluble gases. The cloud influence on theozone concentration can be separated into three portions:1) the change of solar radiation flux by cloud which isresponsible for decreasing or increasing of photochemicalreaction in the troposphere and thus reducing orenhancing the concentration; 2) direct absorption ofozone and its precursors (NO x, NMHC,free radicals, etc.) by in-cloud liquid water; 3)aqueous-phase chemical reaction happening to speciesabsorbed by cloud, responsible for the change in gaseous-phase ozone concentration. Numerical simulations showsubstantial difference in the importance regarding theeffect of these factors on ozone between these levels anda close relation of cloud physical structure to thefactors. The results agree well with the observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anne Monod and P. Carlier: 1999, Atmos. Environ. 33, 4431.

    Google Scholar 

  • Bojkov, R.D.: 1988, Ozone changes at the surface and in the troposphere, in I.S.A. Isakse (ed.), Tropospheric Ozone, D. Reidel, Hingham, Mass., 1988, pp.83–96.

    Google Scholar 

  • Carmichael, G. R., Peters, L. K. and Kitada, T.: 1986, Atmos. Environ. 20, 183.

    Google Scholar 

  • Carmichael, G. R., Peters, L. K. and Saylor, R. D.: 1991, Atmos. Environ. 25A(10), 2077.

    Google Scholar 

  • Chang, J. S., Brost, R. A., Isaken, I. S. A., Middleton, S., Stockwell, W. R. and Walcek, C. J.: 1987, J. Geophy. Res. 92, D12, 14,681–14,700.

    Google Scholar 

  • Chameides, W. L.: 1984, J. Geophys. Res. 89, 4739.

    Google Scholar 

  • Cho, S. Y., Chang, Y. S. and Carmichael, G. R.: 1989, Atmos. Environ. 23, 1009.

    Google Scholar 

  • Crutzen, P. J.: 1973, Pure Appl. Geophys. 106–108, 1385.

    Google Scholar 

  • Danielsen, E. F.: 1968, J. Atmos. Sci. 25, 502.

    Google Scholar 

  • DeMore, W. B., Sander, S. P., Golden, D. M., Hampson, R. F., Kurylo, M. J., Howard, C. J., Ravishankara, A. R., Kolb, C. E. and Molina, M. J.: 1992, Chemival kinetics and photochemical data for use in stratospheric modeling, JPL Publication, 92–20, 185 pp.

  • Hanson, H. P. and Derr, V. E.: 1987, J. Atmos. Sci. 44, 1287.

    Google Scholar 

  • He, Dongyang and Meiyuan Huang: 1996, Atmos. Environ. 30(13), 2449.

    Google Scholar 

  • Jocab, D. J.: 1986, J. Geophys. Res. 91, 9807.

    Google Scholar 

  • Jonson, J. E. and Isaksen I. S. A.: 1993, J. Atmos. Chem. 16, 99.

    Google Scholar 

  • Levieveld, J. and Crutzen, P. J.: 1990, Natur 343, 227.

    Google Scholar 

  • Liu, Xiaohong, Mauersberger, G. and Möller, D.: 1997, Atmos. Environ. 31, 3119.

    Google Scholar 

  • Lurmann, F. W., Lloyd, A. and Atkinson, A.: 1986, J. Geophys. Res. 91, 10905.

    Google Scholar 

  • Luo Chao and Zhou Xiuji: 1994, Acta Meteorologica Sinica 8(2), 195.

    Google Scholar 

  • Matthijsen, J., Builtjes, P. J. H., Meijer, E. W. and Boersen, G.: 1997, Atmos. Environ. 31, 3227.

    Google Scholar 

  • Mckeen, S. A., Hsie, E. Y., Trainer, M., Tallamraju, R., and Liu, S. C.: 1991, J. Geopys. Res. 98, 10809.

    Google Scholar 

  • Monod, A. and Carlier P.: 1999, Atmos. Environ. 33, 4431.

    Google Scholar 

  • Möller, D. and Mauersberger, G.: 1992, J. Atmos. Chem. 14, 153.

    Google Scholar 

  • Skarby, L. and Sellden, G.: 1984, The effects of ozone on crops and forests, AMBIO, 13, 68–72.

    Google Scholar 

  • Tilton, B.E.: 1989, Environmental Science and Technology 23, 257.

    Google Scholar 

  • Warneck, P.: 1988, Chemistry of the Natural Atmosphere, International Geophysics Series, Vol. 41, Academic Press, Inc., USA, 1988, pp. 50–71.

    Google Scholar 

  • Walcek, C. J., Yuan, H. and Stockwell, W. R.: 1997, Atmos. Environ. 31, 1221.

    Google Scholar 

  • Xiao, Hui, Z. L. Shen, M. Y. Huang and Wu, Y. X.: 1987, Scientia Atmospherica Sinica 17(5), 622 (in Chinese).

    Google Scholar 

  • Yan, Peng, Li, X. L., Luo, C. and Yu, X. L. et al.: 1996, Distribution characteristics of O3, NOx, and SOx in some clean areas of China, in Xiuji Zhou (ed.), Variation in Atmospheric Ozone with Its Impact on Climate in China (Part I), China Meteor. Press, Beijing, pp. 1–9.

    Google Scholar 

  • Zhang, Y ang, Sunwoo, Y., Kotamarthi, V. and Carmichael, G. R.: 1994, J. Appl. Meteor. 33, 813.

    Google Scholar 

  • Zhao, Chuansheng and Qin, Yu: 1996,Effect of cumulus process on ozone chemistry, in Xiuji Zhou (ed.), Variation in Atmospheric Ozone with Its Impact on Climate in China (Part I), ed. by China Meteor. Press, Beijing, pp. 222–231.

    Google Scholar 

  • Zhou Xiuji, Luo Chao Ding Guo'an, Tang Jie and Liu Qijun: 1993, Acta Meteorologica Sinica 7(3), 287.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, B., Xiao, H., Huang, M. et al. Numerical Study of Cloud Effects on Tropospheric Ozone. Water, Air, & Soil Pollution 129, 199–216 (2001). https://doi.org/10.1023/A:1010368229728

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010368229728

Navigation