Skip to main content
Log in

Hydrogen and Yttria in Chromium: Influence on the High-Temperature Oxidation Kinetics in O2, Oxide-Growth Mechanisms and Scale Adherence

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The effects of hydrogen and Y_2O_3 on high-temperature oxidation of Cr in 20 mbar O2 have been studied at 900°C. Oxidation- and O2-dissociation rates were determined from gas-phase measurements. Hydrogen in Cr leads to breakdown of the oxide scale. The oxide scale on Cr–1%Y2O3 charged with hydrogen for 4 hr (resulting in Cr–1%Y2O3 with approximately 10 ppm hydrogen) is adherent to the metal substrate. The oxidation rate is similar for Cr with ≤1 ppm hydrogen and Cr–1%Y2O3 with ≤1 ppm hydrogen, but significantly lower for 4-hr H-charged Cr–1%Y2O3. The oxidation rate of Cr–5%Fe–1%Y2O3–25 ppm H is also lower than the oxidation rate of Cr–5%Fe–1%Y2O3–≤1 ppm H. This indicates that unless hydrogen is present, there are virtually no effects of the addition of 1% Y2O3 to Cr. Using labeled oxygen, 16,16O2 and 18,18O2, was found that at 900°C the dissociation rate of O2 is higher on Y2O3 than on Cr2O3. It is suggested that the well-known improvement of the oxidation resistance of Cr as an effect of additions of Y or Y2O3 is related to an increase in the dissociation rate of O2 and that there is a synergetic effect in combining Y2O3 and hydrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Tveten, G. Hultquist, and T. Norby, Oxid. Met. 51, 221 (1999).

    Google Scholar 

  2. G. Hultquist, B. Tveten, and E. Hörnlund, Oxid. Met. 54, (2000).

  3. R. J. Hussey and M. J. Graham, Oxid. Met. 45, 349 (1996).

    Google Scholar 

  4. C. M. Cotell, G. J. Yurek, R. J. Hussey, D. F. Mitchell, and M. J. Graham, Oxid. Met. 34, 173 (1990).

    Google Scholar 

  5. C. M. Cotell, G. J. Yurek, R. J. Hussey, D. F. Mitchell, and M. J. Graham, Oxid. Met. 34, 201 (1990).

    Google Scholar 

  6. D. P. Whittle and J. Stringer, Phil. Trans. R. Soc. London A295, 309 (1980).

    Google Scholar 

  7. J. Stringer, Mater. Sci. Eng. A120, 129 (1989).

    Google Scholar 

  8. P. Hou, V. Chia, and I. Brown, Surface Coat. Technol. 51, 73 (1992).

    Google Scholar 

  9. S. Roure, F. Czerwinski, and A. Petric, Oxid. Met. 42, 75 (1994).

    Google Scholar 

  10. K. Przybylski and G. J. Yurek, Mater. Sci. Forum 43, 1 (1989).

    Google Scholar 

  11. R. Prescott and M. J. Graham, Oxid. Met. 38, 233 (1992).

    Google Scholar 

  12. F. H. Stott, G. C. Wood, and J. Stringer, Oxid. Met. 44, 113 (1995).

    Google Scholar 

  13. E. Hörnlund, Diploma work, Royal Institute of Technology, Stockholm (dy1998).

  14. D. Wallinder, G. Hultquist, B. Tveten, and E. Hörnlund, Corros. Sci., in press.

  15. T. Åkermark, G. Hultquist, and Q. Lu, J. Mater. Eng. Perform. 5, 516 (1996).

    Google Scholar 

  16. G. Hultquist, L. Gråsjö, Q. Lu, and T. Åkermark, Corros. Sci. 36, 1459 (1994).

    Google Scholar 

  17. T. Åkermark, G. Hultquist, and L. Gråsjö, J. Trace Microprobe Technol. 14, 377 (1996).

    Google Scholar 

  18. H. Hindam and D. P. Whittle, Oxid. Met. 18, 245 (1982).

    Google Scholar 

  19. K. P. Lillerud and P. Kofstad, J. Electrochem. Soc. 127, 2397 (1980).

    Google Scholar 

  20. D. Caplan and G. I. Sproule, Oxid. Met. 9, 459 (1975).

    Google Scholar 

  21. D. Mortimer and M. L. Post, Corros. Sci. 8, 499 (1968).

    Google Scholar 

  22. T. Åkermark and G. Hultquist, Oxid. Met. 47, 117 (1997).

    Google Scholar 

  23. T. Åkermark and G. Hultquist, J. Electrochem. Soc. 144, 1456 (1997).

    Google Scholar 

  24. E. J. Felten, Oxid. Met. 10, 23 (1976).

    Google Scholar 

  25. E. J. Felten and F. S. Pettit, Oxid. Met. 10, 189 (1976).

    Google Scholar 

  26. G. Hultquist, B. Tveten, E. Hörnlund, and M. Limbäck, Oxid. Met., submitted.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tveten, B., Hultquist, G. & Walinder, D. Hydrogen and Yttria in Chromium: Influence on the High-Temperature Oxidation Kinetics in O2, Oxide-Growth Mechanisms and Scale Adherence. Oxidation of Metals 55, 279–289 (2001). https://doi.org/10.1023/A:1010360111005

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010360111005

Navigation