Skip to main content

Intuitionistic Logic As Epistemic Logic

This is a preview of subscription content, access via your institution.


  1. Brouwer, L. E. J.: 1975, in A. Heyting (ed.), Collected Works, Vol. 1: Philosophy and Foundations of Mathematics, North-Holland, Amsterdam.

    Google Scholar 

  2. Dummett, M.: 1977, Elements of Intuitionism, Clarendon Press, Oxford.

    Google Scholar 

  3. Gödel, K.: 1990, in S. Feferman et al. (eds), Collected Works, vol. 2, Oxford University Press, New York.

    Google Scholar 

  4. Hintikka, J.: 1996a, ‘Knowledge Acknowledged: Knowledge of Propositions vs. Knowledge of Objects’, Philosophy and Phenomenological Research 61, 251-273.

    Google Scholar 

  5. Hintikka, J.: 1996b, The Principles of Mathematics Revisited, Cambridge University Press, Cambridge.

    Google Scholar 

  6. Hintikka, J.: 1998, ‘Truth Definitions, Skolem Functions and Axiomatic sets Theory’, Bulletin of Symbolic Logic 4, 303-337.

    Google Scholar 

  7. Kolmogorov, A. N.: 1983, ‘On Logical Foundations of Probability Theory’, in K. Ito and J. V. Prokhov (eds), Probability Theory and Mathematical Statistics (Lecture Notes in Mathematics), Vol. 1021, Springer, New York, Heidelberg.

    Google Scholar 

  8. Martin-Löf, P.: 1966, ‘The Definition of Random Sequences’, Information and Control 6, 602-19.

    Google Scholar 

  9. Martin-Löf, P.: 1984, Intuitionistic Type Theory, Bibliopolis, Napoli.

  10. Moore, G.: 1982, Zermelo's Axiom of Choice, Springer, New York, Heidelberg.

    Google Scholar 

  11. Stigt, W. P.: 1990, Brouwer's Intutionism, North-Holland, Amsterdam.

    Google Scholar 

  12. van Dalen, D.: 1996, Mystic, Geometer and Intuitionist: The Life of L. E. J. Brouwer, Vol. 1, Clarendon Press, Oxford.

    Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hintikka, J. Intuitionistic Logic As Epistemic Logic. Synthese 127, 7–19 (2001).

Download citation


  • Intuitionistic Logic
  • Epistemic Logic