Skip to main content
Log in

High-Temperature Corrosion of Iron at 900°C in Atmospheres Containing HCl and H2O

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The corrosion behavior of iron at 900°C in gas mixtures of O2/N2, H2O/O2/N2, HCl/H2O/O2/N2, H2O/N2, and HCl/H2O/N2 was observed. Parabolic oxide-scaling kinetics were observed in all cases, except HCl/H2O/N2 containing 2.5% HCl. This gas produced linear weight-loss kinetics caused by FeCl2 vaporization. Lower HCl concentrations in H2O/N2 led to no chloride formation. In all cases, the reaction products reflected a close approach to local equilibrium between scale and gas. The presence of H2O led to oxide-scale-surface faceting, and in the presence of free oxygen, to acceleration of the sublayer growth of FeO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.-H. Reichel and U. Schirmer, Werkst. Korros. 40, 135 (1989).

    Google Scholar 

  2. N. Bolt, A. S. De Clercq, and E. J. A. Vogelaar, Werkst. Korros. 40, 142 (1989).

    Google Scholar 

  3. O. Forsén and S. Yläsaari, Werkst. Korros. 40, 147 (1989).

    Google Scholar 

  4. Y. Ihara, H. Ohgame, K. Sakiyama, and K. Hashimoto, Corros. Sci. 21, 805 (1981).

    Google Scholar 

  5. Y. Ihara, H. Ohgame, K. Sakiyama, and K. Hashimoto, Corros. Sci. 23, 167 (1983).

    Google Scholar 

  6. Y. Ihara, H. Ohgame, K. Sakiyama, and K. Hashimoto, Corros. Sci. 22, 901 (1982).

    Google Scholar 

  7. Y. Y. Lee and M. J. McNallan, Metall. Trans. A 18A, 1099 (1987).

    Google Scholar 

  8. D. Bramhoff, H. J. Grabke, and H. P. Schmidt, Werkst. Korros. 40, 642 (1989).

    Google Scholar 

  9. Y. Sato, M. Hara, and Y. Shinata, J. Jpn. Inst. Met. 58, 654 (1994) (in Japanese).

    Google Scholar 

  10. F. C. Zeisburg, in International Critical Tables of Numerical Data, E. W. Washburn, ed., (McGraw-Hill, New York, 1926), pp. 301–302.

  11. G. M. Tranell, Ph.D. Thesis, The University of New South Wales (1999), p. 73.

  12. C. Wagner, Z. Phys. Chem. B 21, 25 (1979).

    Google Scholar 

  13. R. K. Singh Raman, B. Gleeson, and D. J. Young, Mater. Sci. Technol. 14, 373 (1998).

    Google Scholar 

  14. O. Kubaschewski and C. B. Alcock, Metallurgical Thermochemistry, 5th edn. (Pergamon Press, Oxford, 1979).

    Google Scholar 

  15. B. Sundman, B. Jansson, and J.-O. Andersson, CALPHAD 9, 153 (1985).

    Google Scholar 

  16. H. Deacon, Chem. News 22, 157 (1970).

  17. T. Norby, Selected Topics in High Temperature Chemistry, Defect Chemistry of Solid, O. Johannessen and A. G. Andersen, eds. (Elsevier, Amsterdam, 1989), p. 101.

    Google Scholar 

  18. C. W. Tuck, M. Odgers, and K. Sachs, Corros. Sci. 9, 271 (1969).

    Google Scholar 

  19. P. Elliott, A. A. Ansari, and R. Nabovi, High Temp. Corros. Energy Syst. p. 437 (1985).

  20. Y. Shinata, M. Hara, Y. Sato, and T. Nakagawa, Trans. Mat. Res. Soc. Jpn. 14A, 157 (1994).

    Google Scholar 

  21. H. J. V. Lee, B. Gleeson, and D. J. Young, Proc. 13th Intern. Corros. Conf., Vol. 3 (ACA Inc., Melbourne, 1996), paper 284.

    Google Scholar 

  22. H. J. V. Lee, D. J. Young, and B. Gleeson, Corrosion 99 (NACE, Houston, Texas 1999), paper 66.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, Y., Young, D.J. High-Temperature Corrosion of Iron at 900°C in Atmospheres Containing HCl and H2O. Oxidation of Metals 55, 243–260 (2001). https://doi.org/10.1023/A:1010356010096

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010356010096

Navigation