Skip to main content
Log in

Comparative Study of the Alumina-Scale Integrity on MA 956 and PM 2000 Alloys

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The present work analyzes the oxidation kinetics of MA 956 and PM 2000 alloys at 900 and 1100°C for exposure times up to 1000 hr. Special emphasis was placed on a comparison of the alumina-scale integrity formed at 1100°C by means of electrochemical tests at room temperature, which have been shown to be very reliable methods to detect the presence of microdefects within oxide scales. To check whether a preoxidation treatment makes these materials corrosion resistant against aggressive fluids, an electrolyte containing chloride ions was chosen. The mass gain of MA 956 was found to be slightly lower than that of PM 2000 up to 200 hr exposure at 1100°C and for the whole exposure range at 900°C. A subparabolic time dependence (n=0.3) of the oxide growth rate was determined for both alloys at both temperatures. On the other hand, the electrochemical-impedance spectroscopy (EIS) and anodic-polarization tests performed on preoxidized alloys (1100°C/100 hr) revealed good room-temperature corrosion behavior for both alloys, the corrosion resistance and polarization values being somewhat higher for preoxidized PM 2000. Consideration of these results and those of both surface and cross-section examinations of the scale, the better room-temperature corrosion behavior of preoxidized PM 2000 denotes the formation of a denser and mechanically more stable alumina scale containing a lower number of microdefects. This could result from the higher aluminum content of this alloy and the lower density of chemical heterogeneities within the scale. The higher mass gain of PM 2000 could be related to the higher concentration of oxide nodules on top of the alumina scale, as deduced from SEM examination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. A. Pint, A. G. Garrat-Reed, and L. W. Hobbs, Mater. High. Temp. 13, 3 (1995).

    Google Scholar 

  2. J. Chao and J. L. González-Carrasco, Mater. Sci. Eng. A230, 39 (1997).

    Google Scholar 

  3. D. M. Macdonald, Proceedings of Frontiers of High Temperature Materials, J. S. Benjamin, ed. (IncoMAP, New York, 1981), pp. 101–110.

    Google Scholar 

  4. M. J. Bennett and M. R. Houlton, Proc. Conf. High Temp. Mater. Power Eng., Liége, Belgium, 24–27 September 1990 (Kluwer Academic Publ., Dordrecht, The Netherlands, 1990), p. 277, part 1.

    Google Scholar 

  5. A. Czyrska-Filemonowicz, R. A. Versaci, D. Clemens, and W. J. Quadakkers, Proc. Conf. Microsc. Oxid. Vol. 2, S. B. Newcomb and M. J. Bennett, eds. (The Institute of Materials, London, 1993), p. 288.

  6. W. J. Quadakkers, K. Schmidt, H. Grübmeier, and E. Wallura, Mater. High Temp. 10, 23 (1992).

    Google Scholar 

  7. M. Türker and T. A. Hughes, Oxid. Met. 44, 505 (1995).

    Google Scholar 

  8. M. J. Bennett, H. Romary, and J. B. Price, Heat-Resistant Materials, Proceedings of the First International Conference, Fontana, Wisconsin, 23–26 September 1991, pp. 95–103.

    Google Scholar 

  9. K. M. N. Prasanna, A. S. Khanna, R. Chandra, and W. J. Quadakkers, Oxid. Met. 46, 465 (1996).

    Google Scholar 

  10. H. Nickel and W. J. Quadakkers, Heat-Resistant Materials, Proceedings of the First International Conference, Fontana, Wisconsin, 23–26 September 1991, pp. 87–94.

    Google Scholar 

  11. W. J. Quadakkers, W. Speier, H. Holzbrecher, and H. Nickel, Proc. Conf. Microsc. Oxid. 26–28 March 1990 (Institute of Metals, Cambridge, 1990), pp. 149–160.

    Google Scholar 

  12. T. A. Ramanarayanan, M. Raghavan, and R. Petkovic-Luton, J. Electrochem. Soc. 131, 923 (1984).

    Google Scholar 

  13. K. Przybylski, A. J. Garratt-Reed, B. A. Pint, E. P. Katz, and G. J. Yurek, J. Electrochem. Soc., p. 3207 (1987).

  14. T. A. Ramanarayanan, R. Ayer, R. Petkovic-Luton, and D. P. Leta, Oxid. Met. 29, 445 (1988).

    Google Scholar 

  15. W. J. Quadakkers, H. Holzbrecher, K. G. Briefs, and H. Beske, Oxid. Met. 32, 67 (1989).

    Google Scholar 

  16. W. J. Quadakkers, A. Elschner, H. Holzbrecher, K. Schmidt, W. Speier, and H. Nickel, Mikrochim. Acta 107, 197 (1992).

    Google Scholar 

  17. A. Czyrska-Filemonowicz, D. Clemens, and W. J. Quadakkers, Metall. Foundry Eng. 21, 319 (1995).

    Google Scholar 

  18. M. Türker, Corros. Sci. 41, 1921 (1999).

    Google Scholar 

  19. W. J. Quadakkers, Werkst. Korros. 41, 659 (1990).

    Google Scholar 

  20. W. J. Quadakkers, T. Malkow, H. Nickel, and A. Czyrska-Filemonowicz, Proc. 2nd Intern. Conf. Heat-Resistant Mater. Gatlinburg, Tennessee, 11–14 September 1995, pp. 91–96.

    Google Scholar 

  21. M. C. García-Alonso, M. L. Escudero, J. L. González-Carrasco, and J. Chao, Oxid. Met. 53, 77 (2000).

    Google Scholar 

  22. P. Lours, J. Alexis, and G. Bernhart, J. Mater. Sci. Lett. 17, 1089 (1988).

    Google Scholar 

  23. S. Weinbruch, A. Anastassiadis, M. Ortner, H. P. Martinz, and P. Wilhartitz, Oxid. Met. 51, 111 (1999).

    Google Scholar 

  24. J. Pan, C. Leygraf, R. F. A. Jargelius-Petterson, and J. Lindén, Oxid. Met. 50, 431 (1998).

    Google Scholar 

  25. M. L. Escudero and J. L. González-Carrasco, Biomaterials 15, 1175 (1994).

    Google Scholar 

  26. M. L. Escudero, J. L. González-Carrasco, M. C. García-Alonso, and E. Ramírez, Biomaterials 16, 735 (1995).

    Google Scholar 

  27. M. C. García-Alonso, M. L. Escudero, J. L. González-Carrasco, and J. Chao, Biomaterials 21, 79 (2000).

    Google Scholar 

  28. R. Hofman, J. H. W. de Wit, M. P. W. Vreijling, G. M. Ferrari, Proc. 5th Euro. Conf. Advan. Mater. Processes Applic. EUROMAT 97, Vol. 3, Surface Engineering and Functional Materials, L. A. J. L. Sarton and H. B. Zeedijk, eds. (Netherlands Society for Materials Science, Maastricht, The Netherlands, 21–23 April, 1997), pp. 197–200.

    Google Scholar 

  29. M. Boualam, G. Beranger, and M. Lambertin, Microsc. Oxid. Vol. 2, Proc. 2nd Intern. Conf. Microsc. Oxid., Cambridge, 29–31 March 1993, S. B. Newcomb and M. J. Bennett, eds. (The Institute of Materials, Cambridge, 1993), pp. 243–252.

    Google Scholar 

  30. M. C. García-Alonso, M. L. Escudero, and J. L. González-Carrasco, to be published.

  31. J. M. Herbelin and M. Mantel, J. Phys. IV 5, 365 (1995).

    Google Scholar 

  32. P. Tomaszewicz and G. R. Wallwork, Oxid. Met. 20, 75 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Carrasco, J.L., García-Alonso, M.C., Montealegre, M.A. et al. Comparative Study of the Alumina-Scale Integrity on MA 956 and PM 2000 Alloys. Oxidation of Metals 55, 209–221 (2001). https://doi.org/10.1023/A:1010351909187

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010351909187

Navigation