L. K. Velikanova, Osmoreceptors [in Russian], Nauka, Novosibirsk (1985).
Google Scholar
A. G. Genetsinskii, Physiological Mechanisms of Water-Salt Equilibrium [in Russian], Academy of Sciences of the USSR Press, Moscow, Leningrad (1963).
Google Scholar
L. N. Ivanova, “Regulation of water balance in the body,” in: The Physiology of Water-Salt Metabolism in the Kidney [in Russian], Nauka, St. Petersburg (1993), pp. 43–70.
Google Scholar
L. N. Maslova, E. V. Chernigovskaya, M. A. Belen'kii, O. A. Danilova, E. V. Naumenko, and A. L. Polenov, “The effects of serotonin on hypothalamic structures involved in the regulation of the hypophyseal-adrenocortical system,” Fiziol. Zh. SSSR, 76, No. 3, 331–337 (1990).
Google Scholar
Yu. V. Natochin, “The mechanism of osmotic dilution and concentration of urine,” in: The Physiology of Water-Salt Metabolism in the Kidney [in Russian], Nauka, St. Petersburg (1993), pp. 393–416.
Google Scholar
E. V. Naumenko, “The effects of 5-hydroxytryptamine on the function of the hypophyseal-adrenal system,” Izv. Sib. Otd. Akad. Nauk. SSSR Ser. Biol., 12, No. 3, 143–144 (1965).
Google Scholar
E. V. Naumenko, Central Regulation of the Hypophyseal-Adrenal Complex [in Russian], Nauka, Leningrad (1971).
Google Scholar
E. V. Naumenko and N. K. Popova, Serotonin and Melatonin in the Regulation of the Endocrine System [in Russian], Nauka, Novosibirsk (1975).
Google Scholar
A. A. Tikhonov and N. M. Bazhan, “Measurement of plasma and incubation fluid glucocorticoids by competitive protein binding without preliminary extraction,” Lab. Delo., 12, 709–713 (1984).
Google Scholar
Ya. D. Finkinshtein, The Osmoregulatory System of Higher Animals[in Russian], Nauka, Novosibirsk (1983).
Google Scholar
A. Adachi, A. Niijima, and H. L. Jacobs, “An hepatic osmoreceptor mechanism in the rat. Electrophysiological and behavioural studies,” Amer. J. Physiol., 231, 1043–1049 (1976).
Google Scholar
P. Bie, “Osmoreceptors, vasopressin and control of renal water excretion,” Physiol. Rev., 60, 961–1048 (1980).
Google Scholar
E. Bliss, J. Ailion, and J. Zwanziger, “Metabolism of norepinephrine, serotonin and dopamine in rat brain with stress,” J. Pharmacol. Exp. Ther., 164, 122–134 (1968).
Google Scholar
S. J. Cooper and R. Ciccocioppo, “Effects of selective 5-HT1 receptor agonists in water-deprived rats on salt intake in two-choice tests,” Pharmacol. Biochem. Behav., 45, No. 3, 513–518 (1993).
Google Scholar
G. Curzon and A. R. Green, “Rapid method for the determination of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid in small regions of rat brain,” Brit. J. Pharmacol., 39, 653–655 (1970).
Google Scholar
G. Curzon, L. Gibson, and A. O. Oluyomi, “Appetite suppression by commonly used drugs depends on 5-HT receptors but not on 5-HT availability,” TiPS, 18, 21–25 (1997).
Google Scholar
J. Dohanics, G. E. Hoffman, and J. G. Verbalis, “Hyponatremia-induced inhibition of magnocellular neurons causes stressor-selective impairment of stimulated adrenocorticotropin secretion in rats,” Endocrinology,
128, 331–340 (1991).
Google Scholar
D. M. Gibbs and W. Vale, “Effect of the serotonin reuptake inhibitor fluoxetine on corticotropin-releasing factor and vasopressin secretion into hypophyseal portal blood,” Brain Res., 280, 176–179 (1983).
Google Scholar
S. L. Handley and J. W. McBlane, “The effect of water deprivation on brain 5-HT turnover, plasma corticosterone and elevated X-maze behavior,” in: Serotonin-1991, Birmingham University, Birmingham (1991).
Google Scholar
K. Hashimoto, N. Ohno, K. Murakami, J. Kageyama, Y. Aoki, and J. Takahara, “The effect of serotonin agonist 1-(trifluoromethylphenyl)-piperazine on corticotropin releasing factor and arginine vasopressin in rat hypothalamus nuclei,” Endocrinol. Jpn., 29, 383–388 (1982).
Google Scholar
J. P. Herman. MK-H. Schafer, S. J. Watson, and T. G. Sherman, “In situ hybridization analysis of arginine vasopressin gene transcription using intron-specific probes,” Mol. Endocrinol., 5, 1447–1456 (1991).
Google Scholar
T. Kimura, L. Share, B. C. Wang, and J. T. Crofton, “The role of central adrenoceptors in the control of vasopressin release and blood pressure,” Endocrinology, 105, 1829–1836 (1981).
Google Scholar
J. Z. Kiss, J. A. M. van Eckelen, J. M. H. M. Reul, H. M. Westphal, and E. R. de Kloet, “Glucocorticoid receptor in magnocellular neurosecretory cells,” Endocrinology, 122, 444–449 (1988).
Google Scholar
L. T. Knapp, K. A. Berghorn, G. E. Hoffman, and T. G. Sharnan, “Osmolality-dependent steroid feedback regulation of vasopressin gene expression,” in: Neurohypophysis: Recent Progress of Vasopressin and Oxytocin Research, Elsevier Science B. V., Amsterdam (1995), pp. 131–141.
Google Scholar
H. P. Krieger and D. T. Krieger, “Chemical stimulation of the brain: effect of adrenal corticoid release,” Amer. J. Physiol., 218, 1632–1641 (1970).
Google Scholar
G. Leng, R. E. J. Dyball, and J. A. Russell, “Neurophysiology of body fluid homeostasis,” Comp. Biochem. Physiol., 90A, 781–788 (1988).
Google Scholar
J. V. Menani and A. K. Johnson, “Lateral parabrachial serotonergic mechanisms: angiotensin-induced pressore and drinking responses,” Amer. J. Physiol., 269, R1044–R1051 (1995).
Google Scholar
E. V. Naumenko, “Hypothalamic chemoreactive structures and the pituitary-adrenal function. Effect of local injection of norepinephrine, carbachol and serotonin into the brain of guinea pigs with intact brains and after mesencephalic transection,” Brain Res., 11, 1–10 (1968).
Google Scholar
E. V. Naumenko, Central Regulation of the Pituitary-Adrenal Complex, Consultants Bureau, Plenum Publishing Corporation, New York (1973).
Google Scholar
H. Raff, “Interactions between neurohypophyseal hormones and the ACTH-adrenocortical axis,” Ann. N. Y. Acad. Sci., 689, 411–425 (1993).
Google Scholar
L. C. Reis, M. J. Ramalho, and J. Antunes-Rodrigues, “Central serotonergic modulation of drinking behavior induced by water deprivation: effect of serotonergic agonist (MK-212) administered intracerebroventricularly,” Braz. Med. Biol. Res., 23, 1335–1338 (1990).
Google Scholar
G. L. Robertson, “The regulation of vasopressin function in health and disease,” Recent Progr. Horm. Res., 33, 333–385 (1977).
Google Scholar
S. Scaccianoce, L. A. Muscolo, G. Cigliana, D. Navazra, R. Nicolai, and L. Andreucci, “Evidence for a specific role of vasopressin in sustaining pituitary-adrenocortical stress response in the rat,” Endocrinology, 1928, 3138–3143 (1991).
Google Scholar
A. H. Sklar and R. W. Schrier, “Central nervous system mediators of vasopressin release,” Physiol. Rev., 63, 1243–1280 (1983).
Google Scholar
J. G. Verbalis, “Osmotic inhibition of neurohypophyseal secretion,” Ann. N. Y. Acad. Sci., 689, 146–160 (1993).
Google Scholar
E. B. Verney, “The antidiuretic hormone and factors which determine its release,” Proc. Roy. Soc. Ser. B. Biol. Sci., 135, 25–106 (1947).
Google Scholar
T. Vokes and G. L. Robertson, “Physiology of secretion of vasopressin,” in: Frontiers of Hormone Research: Diabetes Insipidus in Man, Czernichow et al. (eds.), Basel (1985), Vol. 13, pp. 127–155.