Skip to main content
Log in

John's Theorem for an Arbitrary Pair of Convex Bodies

  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

We provide a generalization of John's representation of the identity for the maximal volume position of L inside K, where K and L are arbitrary smooth convex bodies in ℝn. From this representation we obtain Banach–Mazur distance and volume ratio estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • [Ba] Ball, K. M.: Volume ratios and a reverse isoperimetric inequality, J. London Math. Soc. (2) 44 (1991), 351-359.

    Google Scholar 

  • [Bar] Barthe, F.: Inégalités de Brascamp-Lieb et convexité, C.R. Acad. Sci. Paris 324 (1997), 885-888.

    Google Scholar 

  • [Be] Beer G.: Approximate selections for upper semicontinuous convex valued multi-functions, J. Approx. Theory 39 (1983), 172-184.

    Google Scholar 

  • [BL] Brascamp, H. and Lieb, E. H.: Best constants in Young's inequality, its converse and its generalization to more than three functions, Adv. in Math. 20 (1976), 151-173.

    Google Scholar 

  • [DR] Dvoretzky, A. and Rogers, C. A.: Absolute and unconditional convergence in normed linear spaces, Proc. Nat. Acad. Sci. USA 36 (1950), 192-197.

    Google Scholar 

  • [Gl] Gluskin, E. D.: The diameter of the Minkowski compactum is approximately equal to n, Funct. Anal. Appl. 15 (1981), 72-73.

    Google Scholar 

  • [Gr] Grünbaum, B.: Measures of symmetry for convex sets, In: Convexity VII, Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, 1963, pp. 233-270.

  • [GM] Giannopoulos, A. A. and Milman, V. D.: Extremal problems and isotropic positions of convex bodies, Israel J. Math. 117 (2000), 29-60.

    Google Scholar 

  • [J] John, F.: Extremum Problems with Inequalities as Subsidiary Conditions, Courant Anniversary Volume, New York, 1948, pp. 187-204.

  • [L] Lassak, M.: Approximation of convex bodies by centrally symmetric bodies, Geom. Dedicata 72 (1998), 63-68.

    Google Scholar 

  • [LTJ] Litvak, A. and Tomczak-Jaegermann, N.: Random aspects of high-dimensional con-vex bodies, In: Milman and Schechtman (eds), Lecture Notes in Math. 1745, Springer, New York, 2000, pp. 168-190.

    Google Scholar 

  • [P] Palmon, O.: The only convex body with extremal distance from the ball is the simplex, Israel J. Math. 80 (1992), 337-349.

    Google Scholar 

  • [R] Rudelson, M.: Distances between non-symmetric convex bodies and the MM*-estimate, Positivity 4 (2000), 161-178.

    Google Scholar 

  • [RW] Rockafellar, R. T. and Wets, R. J-B.: Variational Analysis, Grundl. Math. Wissen. 317, Springer, Berlin, 1998.

    Google Scholar 

  • [TJ] Tomczak-Jaegermann, N.: Banach-Mazur Distances and Finite Dimensional Operator Ideals, Pitman Monographs 38, Pitman, London, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giannopoulos, A., Perissinaki, I. & Tsolomitis, A. John's Theorem for an Arbitrary Pair of Convex Bodies. Geometriae Dedicata 84, 63–79 (2001). https://doi.org/10.1023/A:1010327006555

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010327006555

Navigation