Skip to main content
Log in

The Effect of Hydrogen Annealing on the Impurity Content of Alumina-Forming Alloys

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Previously, the effect of hydrogen annealing on increasing the adhesion of Al2O3 scales had been related to the effective desulfurization that occurred during this process. The simultaneous reduction of other impurities has now been reexamined for up to 20 impurity elements, in the case of five different alloys (NiCrAl, FeCrAl, PWA 1480, René 142, and René N5). Hydrogen annealing produced measurable reductions in elemental concentration for B, C, Na, Mg, Si, P, K, Sr, or Sn in varying degrees for at least one and up to three of these alloys. However, no single element was reduced by hydrogen annealing for all the alloys except sulfur. In many cases spalling occurred at low levels of these other impurities, while in other cases the scales were adherent at high levels of the impurities. No impurity besides sulfur was strongly correlated with adhesion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. M. Allam, D. P. Whittle, and J. Stringer, Oxid. Met. 12, 35 (1978).

    Google Scholar 

  2. F. A. Golightly, F. H. Stott, and G. C. Wood, J. Electrochem. Soc., 1035 (1979).

  3. J. K. Tien and F. S. Pettit, Metall. Trans. 3, 1587 (1972).

    Google Scholar 

  4. J. G. Smeggil, A. W. Funkenbusch, and N. S. Bornstein, Metall. Trans. A 17, 923 (1986).

    Google Scholar 

  5. J. L. Smialek, Oxidation and Associated Mass Transport (TMS-AIME, Warrendale, PA, 1986), p. 297.

    Google Scholar 

  6. J. G. Smeggil, Mater. Sci. Eng. 87, 261 (1987).

    Google Scholar 

  7. J. L. Smialek, Metall. Trans. 22, 739 (1991).

    Google Scholar 

  8. R. V. McVay, P. Williams, G. H. Meier, F. S. Pettit, and J. L. Smialek, in Superalloys '92, S. D. Antolovich et al., eds. (TMS-AIME, Warrendale, PA, 1992), p. 807.

    Google Scholar 

  9. J. L. Smialek and B. K. Tubbs, Metall. Mater. Trans. 26A, 427 (1995).

    Google Scholar 

  10. J. L. Smialek, D. T. Jayne, J. C. Schaeffer, and W. H. Murphy, Thin Solid Films 253, 285 (1994).

    Google Scholar 

  11. M. C. Stasik, F. S. Pettit, G. H. Meier, A. Ashary, and J. L. Smialek, Scripta Metall. Mater. 31, 1645 (1994).

  12. J. L. Smialek, in High Temperature Corrosion and Materials Chemistry, 98–9, P. Y. Hou, M. J. McNallan, R. Oltra, E. J. Opila, and D. A. Shores, eds. (The Electrochemical Society, Pennington, NJ, 1998), p. 211.

    Google Scholar 

  13. V. K. Tolpygo and H. J. Grabke, Scripta Mater. 38, 123 (1998).

    Google Scholar 

  14. S. Baik and J. H. Moon, J. Amer. Ceram. Soc. 74, 819 (1991).

    Google Scholar 

  15. L. A. Larson, R. Browning, H. Poppa, and J. L. Smialek, J. Vac. Sci. Technol. A1, 1029 (1983).

    Google Scholar 

  16. H. Al-Badairy, G. J. Tatlock, and J. Le Coze, in Microscopy of Oxidation, Vol. 3, S. B. Newcomb and J. A. Little, eds. (Institute of Materials, London, 1997), p. 105.

  17. A. Glaskov, M. Gobel, G. Borchardt, H. Al-Badairy, J. Ritherdon, G. J. Tatlock, and J. E. LeCoze, in Microscopy of Oxidation, Vol. 3, S. B. Newcomb and J. A. Little, eds. (Institute of Materials, London, 1997), p. 115.

  18. V. K. Tolpygo and H. Viefhaus, Oxid. Met. 50, 1 (1999).

    Google Scholar 

  19. B. A. Pint and K. B. Alexander, J. Electrochem. Soc. 145, 1819 (1998).

    Google Scholar 

  20. B. A. Pint and K. B. Alexander, in Microscopy of Oxidation, Vol. 3, S. B. Newcomb and J. A. Little, eds. (The Institute of Materials, London, 1997), p. 153.

  21. B. A. Pint, A. J. Garrett-Reed, and L. W. Hobbs, J. Amer. Ceram. Soc. 81, 305 (1998).

    Google Scholar 

  22. J. L. Smialek, J. Electrochem. Soc. 126, 2275 (1979).

    Google Scholar 

  23. K. P. R. Reddy, J. L. Smialek, and A. R. Cooper, Oxid. Met. 17, 429 (1982).

    Google Scholar 

  24. D. T. Jayne and J. L. Smialek, in Microscopy of Oxidation, Vol. 2, S. B. Newcomb and M. J. Bennett, eds. (The Institute of Metals, London, 1993), p. 183.

    Google Scholar 

  25. R. C. Christensen, V. K. Tolpygo, and D. R. Clarke, Acta Mater. 45, 1761 (1997).

    Google Scholar 

  26. V. K. Tolpygo and D. R. Clarke, Oxid. Met. 49, 187 (1998).

    Google Scholar 

  27. C. S. Giggins, E. J. Felten, and F. S. Pettit, in Stress Effects and Oxidation, J. V. Cathcart, ed. (TMS-AIME, 1975), p. 245.

  28. C. S. Giggins and F. S. Pettit, Oxide Scale Adherence Mechanisms, Final Report ARL 75–0234, Contract F33615–72C-1702 (Wright Patterson Air Force Base, OH, 1975; also Pratt and Whitney Contract Report PWA 5364).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smialek, J.L. The Effect of Hydrogen Annealing on the Impurity Content of Alumina-Forming Alloys. Oxidation of Metals 55, 75–86 (2001). https://doi.org/10.1023/A:1010325209121

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010325209121

Navigation