Skip to main content
Log in

Components of Male Aggregation Pheromone of Strawberry Blossom Weevil, Anthonomus rubi Herbst. (Coleoptera: Curculionidae)

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The strawberry blossom weevil, Anthonomus rubi, is a major pest of strawberries in the United Kingdom and continental Europe. As part of a project to develop noninsecticidal control methods, the pheromone system of this species was investigated. Comparison of volatiles produced by field-collected, overwintering individuals of each sex led to identification of three male-specific compounds—(Z)-2-(3,3-dimethylcyclohexylidene)ethanol, (cis)-1-methyl-2-(1-methylethenyl)cyclobutaneethanol, and 2-(1-methylethenyl)5-methyl-4-hexen-1-ol (lavandulol)—in amounts of 6.1, 1.2, and 0.82 μg/day/male. The first two compounds are components of the aggregation pheromone of the boll weevil, Anthonomus grandis, grandlure II and grandlure I, respectively. Grandlure I was the (1R,2S)-(+) enantiomer and lavandulol was a single enantiomer, although the absolute configuration was not determined. Trace amounts of the other two grandlure components (Z)-(3,3-dimethylcyclohexylidene)acetaldehyde (grandlure III) and (E)-(3,3-dimethylcyclohexylidene)acetaldehyde (grandlure IV) were also detected. (E,E)-1-(1-Methylethyl)-4-methylene8-methyl-2,7-cyclo-decadiene (germacrene-D), a known volatile from strawberry plants, Fragaria ananassa, was collected in increased amounts in the presence of pheromone-producing weevils. Male weevils only produced pheromone on F. ananassaand not on scented mayweed, Matracaria recutita, or cowparsley, Anthriscus sylvestris, although these are known food sources. In field trials using various combinations of synthetic grandlures I, II, III, and IV and lavandulol, significantly more weevils were caught in traps baited with blends containing grandlure I and II and lavandulol than in those baited with blends without lavandulol or unbaited controls. Addition of grandlure III and IV had no significant effect on attractiveness. Horizontal sticky traps were found to be more effective than vertical sticky traps or standard boll weevil traps. In mid-season females predominated in the catches, but later more males than females were trapped.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • ADAMS, R. P. 1989. Identification of Essential Oils by Ion Trap Mass Spectroscopy. Academic Press Limited, London.

    Google Scholar 

  • ALFORD, D. V. 1984. A Colour Atlas of Fruit Pests: Their Recognition, Biology and Control. Wolfe Publishing London.

  • BALACHOWSKY, A., and MESNIL, L. 1935. Les Insectes Nuisibles aux Plantes Cultivées. Ministry of Agriculture, Paris, France.

    Google Scholar 

  • BARTELT, R. J. 1999. Weevils, pp. 91-112, inJ. Hardie and A. K. Minks (eds.). Pheromones of Non-Lepidopteran Insects Associated with Agricultural Plants. CABI Publishing, Wallingford, UK.

    Google Scholar 

  • BOHLMANN, F., ZDERO C., and FAASS, U. 1973. Natürlich vorkommende Terpenderivate, XXVI. Uber die inhaltstoffe von Artemesia fragransWilld. Chem. Ber.106:2904-2909.

    Google Scholar 

  • CERDA, H., FERNANDAZ, G., LOPEZ, A., and VARGA, J. 1999. Olfactory attraction of the sugar cane weevil (Coleoptera: Curculionidae) to host plant odors, and its aggregation pheromone. Fla. Entomol.82:103-112.

    Google Scholar 

  • CROSS, J. V., and EASTERBROOK, M. A. 1998. Integrated management of flower pests of strawberry. IOBC/WPRS Bull.21:81-87.

    Google Scholar 

  • DETHIER, V. G., BARTON BROWN, L., and SMITH, C. N. 1960. The designation of chemicals in terms of the responses they elicit from insects. J. Econ. Entomol.53:134-136.

    Google Scholar 

  • DICKE, M. 1999. Are herbivore-induced plant volatiles reliable indicators of herbivore identity to foraging carnivorous arthropods? Entomol. Exp. Appl.91:131-142.

    Google Scholar 

  • DICKENS, J. C. 1989. Green leaf volatiles enhance aggregation pheromone of boll weevil, Anthonomus grandis. Entomol. Exp. Appl.52:191-203.

    Google Scholar 

  • DICKENS, J. C., and MORI, K. 1989. Receptor chirality and behavioral specificity of the boll weevil, Anthonomus grandisBoh. (Coleoptera: Curculionidae), for its pheromone, (+)-grandisol. J. Chem. Ecol.15:517-527.

    Google Scholar 

  • ELLER, F. J., BARTELT, R. J., SHASHA, B. S., SCHUSTER, D. J., RILEY, D. G., STANSLEY, P. A., MULLER, T. F., SHULER, K. D., JOHNSON, B., DAVIS, J. H., and SUTHERLAND, C. A. 1994. Aggregation pheromone for the pepper weevil, Anthonomus eugeniiCano (Coleoptera: Curculionidae): Identification and field activity. J. Chem. Ecol.20:1537-1555.

    Google Scholar 

  • FENOULHET, G. 1907. The black Anthonomus(Anthonomus rubi) attacking the strawberry. J. South-East. Agricul. Coll. Wye16:105-108.

    Google Scholar 

  • GIBLIN-DAVIS, R. M., WEISSLING, T. J., OEHLSCHLAGER, A. C., and GONZALEZ, L. M. 1994. Field response of Rhynchophorus cruentatus(Coleoptera: Curculionidae) to its aggregation pheromone and fermenting plant volatiles. Fla Entomol.77:164-177.

    Google Scholar 

  • GIBLIN-DAVIS, R. M., OEHLSCHLAGER, A. C., PEREZ, A., GRIES, G., GREIS, R., WEISSLING, T. J., CHINCHILLA, C. M., PENA, J. E., HALLETT, R. H., PIERCE, H.D., JR., and GONZALEZ, L.M. 1996. Chemical and behavioural ecology of palm weevils (Curculionidae: Rhynchophorinae). Fla. Entomol.79:153-167.

    Google Scholar 

  • HAMILTON-KEMP, T. R., LOUGHRIN, J. H., and ANDERSEN, R. A. 1990. Identification of some volatile compounds from strawberry flowers. Phytochemistry29:2847-2848.

    Google Scholar 

  • HARDEE, D. D., and MITCHELL, E. B. 1997. Boll weevil, Anthonomus grandisBoheman (Coleoptera: Curculionidae): A summary of research on behaviour as affected by chemical communication. Southwest. Entomol.22:466-491.

    Google Scholar 

  • HARDEE, D. D., CROSS, W. H., HUDDLESTON, P. M., and DAVICH, T. B. 1970. Survey and control of the boll weevil in West Texas with traps baited with males. J. Econ. Entomol.63:1041-1048.

    Google Scholar 

  • HEDIN, P. A., MCKIBBEN, G. H., MITCHELL, E. B., and JOHNSON, W. L. 1979. Identification and field evaluation of the compounds comprising the sex pheromone of the female boll weevil. J. Chem. Ecol.5:617-627.

    Google Scholar 

  • HEDIN, P. A., PAYNE, J. A., CARPENTER, T. L., and NEEL, W. 1996. Sex pheromones of the male and female pecan weevil, Curuculio caryae:Behavioural and chemical studies. Environ. Entomol.8:521-523.

    Google Scholar 

  • HEDIN, P. A., DOLLAR, D. A., COLLINS, J. K., DUBOIS, J. G., MULDER, P. G., HEDGER, G. H., SMITH, M. W., and EIKENBARY, R. D. 1997. Identification of male pecan weevil pheromone. J. Chem. Ecol.23:965-977.

    Google Scholar 

  • HENSON, R. D., BULL, D. L., RIDGWAY, R. L., and IVIE, G. W. 1976. Identification of the oxidative decomposition products of the boll weevil pheromone, grandlure, and the determination of the fate of grandlure in soil and water. J. Agric. Food Chem.24:228-231.

    Google Scholar 

  • HOFFMANN, A. 1954. Faune de France. Editions Paul Lechevalier, Paris.

    Google Scholar 

  • INNOCENZI, P. J., HALL, D. R., CROSS, J. V., and GREEN, S. V. 2001. Sexing adults of the strawberry blossom weevil, Anthonomus rubiHerbst. (Coleoptera: Curculionidae). J. Appl. Entomol.In press.

  • JARY, S. G. 1932. The strawberry blossom weevil Anthonomus rubi(Herbst). J. South-East. Agric. Coll. Wye30:171-182.

    Google Scholar 

  • KENNEDY, J. S. 1977. Olfactory responses to distant plants and other odor sources, pp. 67-91, inH. H. Shorey and J. J. McKelveyn (eds.). Chemical Control of Insect Behaviour: Theory and Application. John Wiley, New York.

    Google Scholar 

  • LANDOLT, P. J., and PHILLIPS, T. W. 1997. Host plant influences on sex pheromone behaviour of phytophagous insects. Annu. Rev. Entomol.42:271-391.

    Google Scholar 

  • LOUGHRIN, J. H., POTTER, D. A., HAMILTON-KEMP, T. R., and BYERS, M. E. 1996. Role of feeding-induced plant volatiles in aggregative behaviour of the Japanese beetle (Coleoptera: Scarabaeidae). Environ. Entomol.25:1188-1191.

    Google Scholar 

  • MITCHELL, E. B., and HARDEE, D. D. 1974a. In-field traps: A new concept in survey and suppression of low populations of boll weevils. J. Econ. Entomol.67:506-508.

    Google Scholar 

  • MITCHELL, E. B., and HARDEE, D. D. 1974b. Seasonal determination of sex ratios and condition of diapause of boll weevils in traps and in the field. Environ. Entomol.3:386-388.

    Google Scholar 

  • MITLIN, N., and HEDIN, P. A. 1974. Biosynthesis of Grandlure, the pheromone of the boll weevil, Anthonomus grandis, from acetate, mevalonate, and glucose. J. Insect Physiol.20:1825-1831.

    Google Scholar 

  • MORI, K., and FUKAMATSU, K. 1992. A new synthesis of (+)-grandisol. Liebigs Ann. Chem.1992:489-493.

    Google Scholar 

  • MORRIS, M. G. 1977. The British species of AnthonomusGermar (Col., Curculionidae). Entomol. Mon. Mag.112:19-40.

    Google Scholar 

  • NISHII, Y., YOSHIDA, T., and TANABE, Y. 1997. Enantiomeric resolution of a germacrene-D derivative by chiral high-performance liquid chromatography. Biosci. Biotech. Biochem.61:547-548.

    Google Scholar 

  • PLARRE, R., and VANDERWEL, D. C. 1999. Stored-product beetles, pp. 149-198, inJ. Hardie and A. K. Minks (eds.). Pheromones of Non-Lepidopteran Insects Associated with Agricultural Plants. CABI Publishing, Wallingford, UK.

    Google Scholar 

  • POPOV, S. Y. 1996. Possibility of monitoring the population density of the strawberry blossom weevil, Anthonomus rubiHerbst (Coleoptera, Curculionidae), on strawberry by two methods: counting clipped buds and using pheromones. Entomol. Rev.75:104-109.

    Google Scholar 

  • RIDGWAY, R. L., INSCOE, M. N., and DICKERSON, W. A. 1990. Role of the boll weevil pheromone in pest management. pp. 437-471, inR. L. Ridgway, R. M. Silverstein and M. N. Inscoe (eds.). Behavior-Modifying Chemicals for Insect Management: Applications of Pheromones and other Attractants. Marcel Dekker, New York.

    Google Scholar 

  • THOMPSON, A. C., and MITLIN, N. 1979. Biosynthesis of the sex pheromone of the male boll weevil from monoterpene precursors. Insect Biochem.9:293-294.

    Google Scholar 

  • TUMLINSON, J. H., HARDEE, D. D., GUELDNER, R. C., THOMPSON, A. C., HEDIN, P. A., and MINYARD, J. P. 1969. Sex pheromones produced by male boll weevils: Isolation, identification and synthesis. Science166:1010-1012.

    Google Scholar 

  • VILLAVASO, E. J., and EARLE, N. W. 1974. Attraction of female boll weevils to diapausing and reproducing males. J. Econ. Entomol.67:171-172.

    Google Scholar 

  • YAMAZAKI, S., FUJITSUKA, H., TAKARA, K., and INOUE, T. 1994. Utilization of selenium-directed [2 + 2] cycloadditions: Concise synthesis of fragranol. J. Chem. Soc. Perkin Trans. 16:695-700.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Innocenzi, P.J., Hall, D.R. & Cross, J.V. Components of Male Aggregation Pheromone of Strawberry Blossom Weevil, Anthonomus rubi Herbst. (Coleoptera: Curculionidae). J Chem Ecol 27, 1203–1218 (2001). https://doi.org/10.1023/A:1010320130073

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010320130073

Navigation