Skip to main content
Log in

Families of Structures on Spherical Fibrations

  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

Let SF(n) be the usual monoid of orientation- and base point-preserving self-equivalences of the n-sphere \({\mathbb{S}^n}\) n. If Y is a (right) SF(n)-space, one can construct a classifying space B(Y, SF(n), *)=B n for \({\mathbb{S}^n}\) n-fibrations with Y-structure, by making use of the two-sided bar construction. Let k: B n →BSF(n) be the forgetful map. A Y-structure on a spherical fibration corresponds to a lifting of the classifying map into B n . Let K i =K \(\left( {{\mathbb{Z}_2 }} \right)\), i) be the Eilenberg–Mac Lane space of type \(\left( {{\mathbb{Z}_2 }} \right)\), i). In this paper we study families of structures on a given spherical fibration. In particular, we construct a universal family of Y-structures, where Y=W n is a space homotopy equivalent to ∏ i≥1 K i . Applying results due to Booth, Heath, Morgan and Piccinini, we prove that the universal family is a spherical fibration over the space map{B n , B n B n . Furthermore, we point out the significance of this space for secondary characteristic classes. Finally, we calculate the cohomology of B n .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, J. F.: On the non-existence of elements of Hopf invariant one Ann. of Math. 72 (1960), 20–104.

    Google Scholar 

  2. Booth, P.: Equivariant homotopy theories and groups of self-equivalences, In: R. A. Piccinini (ed.), Groups of Self-Equivalences and Related Topics, (Montreal 1988), Lecture Notes in Math. 1425, Springer-Verlag, New York, 1990, pp. 1–16.

    Google Scholar 

  3. Booth, P., Heath, P., Morgan, C. and Piccinini, R.: H-spaces of self-equivalences of fibrations and bundles, Proc. London Math. Soc. (3)49 (1984), 111–127.

    Google Scholar 

  4. Cohen, F., Lada, T. and May, P.: The Homology of Iterated Loop Spaces, Lecture Notes in Math. 533, Springer-Verlag, New York, 1976.

    Google Scholar 

  5. Dwyer, W. G. and Kan, D. M.: Reducing equivariant homotopy theory to the theory of fibrations, Contemp. Math. 37 (1985), 35–49.

    Google Scholar 

  6. Ganea, T.: A generalization of the homology and homotopy suspension, Comm. Math. Helv. 39 (1965), 295–322.

    Google Scholar 

  7. Hegenbarth, F. and Heil, A.: Exotic characteristic classes and their relation to universal surgery classes, Math. Z. 186 (1984), 211–221.

    Google Scholar 

  8. Kahn, D. W.: Some research problems on homotopy self-equivalences, In: R. Piccinini (ed.), Groups of Self-Equivalences and Related Topics, Lecture Notes in Math. 1425, Springer-Verlag, New York, 1990, pp. 204–207.

    Google Scholar 

  9. Madsen, I. and Milgram, R.J.: The Classifying Spaces for Surgery and Cobordism of Manifolds, Ann. of Math.Studies 92, Princeton Univ. Press, Princeton,N.J., 1979.

    Google Scholar 

  10. Massey, W. S. and Peterson, F.: The cohomology structure of certain fibre spaces – I, Topology 4 (1965), 47–65.

    Google Scholar 

  11. May, J. P.: Classifying Spaces and Fibrations, Mem. Amer. Math. Soc. 155, Providence, R.I., 1975.

  12. May, J. P.: The Homology of E∞ Ring Spaces, Lecture Notes in Math. 533, Springer-Verlag, New York, 1976.

    Google Scholar 

  13. Milgram, J.: The mod 2 spherical characteristic classes, Ann. of Math. 92 (1970), 238–261.

    Google Scholar 

  14. Papadima, S.: Rigidity properties of compact Lie groups modulo maximal tori, Math. Ann. 275 (1986), 637–652.

    Google Scholar 

  15. Piccinini, R. A. (ed.): Groups of Self-Equivalences and Related Topics, Lecture Notes in Math. 1425, Springer-Verlag, New York, 1990.

    Google Scholar 

  16. Ravenel, D.: A definition of exotic characteristic classes of spherical fibrations, Comm. Math. Helv. 47 (1972), 421–436.

    Google Scholar 

  17. Rudyak, Y. B.: On Thom Spectra, Orientability, and Cobordism, Monogr. Math., Springer-Verlag, New York, 1998.

    Google Scholar 

  18. Rutter, J.: Spaces of Homotopy Self-Equivalences, A Survey, Lecture Notes in Math. 1662, Springer-Verlag, New York, 1997.

    Google Scholar 

  19. Smith, L.: Homological algebra and the Eilenberg-Moore spectral sequence, Trans. Amer. Math. Soc. 129 (1967), 58–93.

    Google Scholar 

  20. Spanier, E.: Algebraic Topology, McGraw-Hill, New York, 1966.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cavicchioli, A., Hegenbarth, F. Families of Structures on Spherical Fibrations. Geometriae Dedicata 85, 85–111 (2001). https://doi.org/10.1023/A:1010315627920

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010315627920

Navigation