Skip to main content
Log in

Dimension de Hausdorff de la Nervure

  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

For a separable Hilbert space E whose dimension is ≥2 and for an open subset Ω of E, not empty and different from E, let \(\mathcal{M}\) be the set of all points of Ω which have at least two projections on the close set E\Ω, and let \(\mathcal{N}\) be the set of all the centres of the open balls contained in Ω and which are maximal for inclusion. We show that the Hausdorff dimension dimH(\(\mathcal{N}\)\\(\mathcal{M}\)) of \(\mathcal{N}\)\\(\mathcal{M}\) may be any real value s such that 0≤s≤dim E; we also show that Ω can be chosen so that \(\mathcal{N}\) is everywhere dense in Ω and so that we have dimH(\(\mathcal{N}\)\\(\mathcal{M}\))=1.

Associons à un ouvert Ω d'un espace de Hilbert séparable E de dimension ≥2, non vide et distinct de E, l'ensemble \(\mathcal{M}\) des points de Ω admettant plusieurs projections sur le fermé E\Ω, et l'ensemble \(\mathcal{N}\) des centres des boules ouvertes inclues dans Ω et maximales pour l'inclusion. Nous montrons d'une part que la dimension de Hausdorff dimH(\(\mathcal{N}\)\\(\mathcal{M}\)) de \(\mathcal{N}\)\\(\mathcal{M}\) peut prendre toute valeur réelle s telle que 0≤s≤dim E, et d'autre part qu'on peut choisir Ω de sorte que \(\mathcal{N}\) soit dense dans Ω et qu'on ait dimH(\(\mathcal{N}\)\\(\mathcal{M}\))=1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Choy, H.I., Lee, D.S. and Yoon, J.-H.: Cut locus of a separating fractal set in a Riemannian manifold. Tôhoku Math. J. II 50 (1998), 455–467.

    Google Scholar 

  2. de Blasi F.S. and Zamfirescu T.I.: Cardinality of the metric projection on typical compact sets in Hilbert spaces, Math. Proc. Camb. Phil. Soc., 126 (1999), 37–44.

    Google Scholar 

  3. Erdös, P.: On the Hausdorff dimension of some sets in euclidean space. Bull. Amer. Math. Soc. 52 (1946), 107–109.

    Google Scholar 

  4. Falconer, K.: The Geometry of Fractal Sets, Cambridge Univ. Press, 1985.

  5. Federer, H.: Geometric Measure Theory, Springer-Verlag, New York, 1969.

    Google Scholar 

  6. Gershkovich, V. and Rubinstein, H.: Generic cut loci on surfaces and their generic transformations via singularity theory for riemannian distance functions, IHES/M/98/80, preprint, 1998.

  7. Hebda, J.: Metric structure of cut loci in surfaces and Ambrose's problem, J. Differential Geom. 40 (1994), 621–642.

    Google Scholar 

  8. Itoh, Jin-Ichi: The length of a cut locus on a surface and Ambrose's problem, J. Differential Geom. 43 (1996), 642–651.

    Google Scholar 

  9. Itoh, Jin-Ichi and Tanaka Milnoru.: The dimension of a cut locus on a smooth Riemannian manifold, Tôhoku Math. J. 50 (1998), 571–575.

    Google Scholar 

  10. Kobayashi, S.: On conjugate and cut loci, Stud. in Global Geom. Anal. (1967), 98–122.

  11. Matheron, G.: Examples of topological properties of squeletons et on the negligeability of the squeleton and the absolute continuity of erosions, In: J. Serra (ed.), Image Analysis and Mathematical Morphology, Vol. 2, Academic Press, London, 1988, pp. 217–256.

    Google Scholar 

  12. Rivière, A.: Classification des points d'un ouvert d'un espace euclidien relativement à la distance au bord, étude topologique et quantitative des classes obtenues, Theèse, Universitéde Paris Sud, November 1987.

  13. Rivière, A.: Nervure et point fixe, In: Séminaire d'Initiation à l'Analyse, volume 95, 1989–1990.

  14. Rivière, A.: Nervure d'un ouvert d'un espace euclidien, J. Sci. Univ. Tehran, A: Math. 1 (1996), 1–24.

    Google Scholar 

  15. Rogers, C. A.: Hausdorff Measures, Cambridge Univ. Press, London, 1970.

    Google Scholar 

  16. Sakai, T.: Riemannian Geometry, Amer. Math. Soc., Providence, 1996.

    Google Scholar 

  17. Schmitt, M. and Mattioli, J.: Morphologie mathématique, Technical report, Laboratoire Central de Recherches de Thomson-CSF, February 1992.

  18. Shiohama, K. and Tanaka, M.: Cut loci and distance spheres on Alexandrov surfaces, In: Besse, A. (ed.): Actes de la Table Ronde de géométrie différentielle (Luminy, 1992), volume 1, Société Mathématique de France, 1996, pp. 531–559.

    Google Scholar 

  19. Zamfirescu, T:. The nearest point mapping is singled valued nearly everywhere. Arch. Math., 54 (1990), 563–566.

    Google Scholar 

  20. Zamfirescu, T.: Baire categories in convexity. Atti. Sem. Mat. Fis. Univ. Modena, 39 (1991), 139–164.

    Google Scholar 

  21. Zamfirescu, T.: Géodésiques et lieux de coupure sur les surfaces convexes typiques. An. Şt. Univ. Ovidius Constanţa, 3(2) (1995), 167–173.

    Google Scholar 

  22. Zamfirescu, T.: Extreme points of the distance function on convex surfaces, Trans. Amer. Math. Soc. 350(4) (1998), 1395–1406.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rivière, A. Dimension de Hausdorff de la Nervure. Geometriae Dedicata 85, 217–235 (2001). https://doi.org/10.1023/A:1010310524706

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010310524706

Navigation