Skip to main content
Log in

Asymptotic Characteristics of the Evolution of Polarization of Nonmonochromatic Radiation in Single-Mode Optical Fibers with a Random Twisting of Axes of Linear Birefringence. I. Limiting of Polarization in an Infinitely Long Fiber

  • Published:
Radiophysics and Quantum Electronics Aims and scope

Abstract

We reduce the problem of finding the limiting value of the fiber-ensemble averaged degree of radiation polarization of in an infinitely long optical fiber to the problem of distributions (including joint distributions) of random complex amplitudes E(λ,z) of the electric field in an optical wave for different wavelengths λ and the fiber length z tending to infinity. We prove that the random complex vector E(λ,z) is uniformly distributed on a three-dimensional sphere if z→∞. It is also proved that the random vectors E(λ1,z) and E(λ2,z) are independent if λ1≠λ2 and z→∞, whence it follows that their joint distribution is entirely determined by the distribution of each of them. The result obtained allows us to find the limiting average values of various quantities describing the radiation upon passing an optical fiber with a random twisting of the anisotropy axes. In particular, on the basis of this result, we show that the average degree of polarization of incoherent radiation upon passing a fiber with such random irregularities tends to zero as the optical-fiber length goes to infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. B. Malykin, Izv. Vyssh. Uchebn. Zaved., Radiofiz., 35, No. 2, 189 (1992).

    Google Scholar 

  2. G. B. Malykin, Opt. Spektrosk., 75, No. 6, 1314 (1993).

    Google Scholar 

  3. W. K. Burns and R.P. Moeller, J. Lightwave Tech., 2, No. 4, 430 (1984).

    Google Scholar 

  4. S. M. Kozel, V. N. Listvin, S.V. Shatalin, and R. V. Yushkaitis, Opt. Spektrosk., 61, No. 6, 1295 (1986).

    Google Scholar 

  5. G. B. Malykin, Izv. Vyssh. Uchebn. Zaved., Radiofiz., 34, No. 7, 817 (1991).

    Google Scholar 

  6. G. B. Malykin, I. M. Nefedov, and I. A. Shereshevskii, Izv. Vyssh. Uchebn. Zaved., Radiofiz., 37, No. 11, 1473 (1994).

    Google Scholar 

  7. G. B. Malykin and V. I. Pozdnyakova, Opt. Spektrosk., 84, No. 1, 145 (1998).

    Google Scholar 

  8. G. B. Malykin and V. I. Pozdnyakova, Opt. Spektrosk., 86, No. 3, 513 (1999).

    Google Scholar 

  9. A. D. Kersey, M. J. Marrone, and A. Dandridge, Opt. Lett., 13, No. 10, 847 (1988).

    Google Scholar 

  10. K. H. Wanser and N. H. Safar, Opt. Lett., 12, No. 3, 217 (1987).

    Google Scholar 

  11. C. D. Poole, Opt. Lett., 13, No. 8, 687 (1988).

    Google Scholar 

  12. C. D. Poole, W. C. Bergano., R. E. Wagner, and H. J. Schutle, J. Lightwave Tech., 6, No. 7, 1185 (1988).

    Google Scholar 

  13. C. D. Poole, Opt. Lett., 14, No. 10, 523 (1989).

    Google Scholar 

  14. N. Gisin, J.P. von der Wied, and J.P. Pellaux, J. Lightwave Tech., 9, No. 7, 821 (1991).

    Google Scholar 

  15. V. N. Listvin, V.T. Potapov, V.N. Treshchikov, and S. V. Shatalin, “Inverse Problem in Polarization Polarimetry,” Preprint of the Institute of Radioengineering and Electronics, Russian Academy of Sciences, No. 1 (622), Moscow (1998).

  16. W. K. Burns, R.P. Moeller, and C. L. Chen, J. Lightwave Tech., 1, No. 1, 44 (1983).

    Google Scholar 

  17. A. N. Zalogin, S. M. Kozel, and V. N. Listvin, Izv. Vyssh. Uchebn. Zaved., Radiofiz., 29, No. 2, 243 (1986).

    Google Scholar 

  18. G. B. Malykin, Izv. Vyssh. Uchebn. Zaved., Radiofiz., 35, No. 11-12, 993 (1992).

    Google Scholar 

  19. G. B. Malykin, I. M. Nefedov, and I. A. Shereshevskii, Izv. Vyssh. Uchebn. Zaved., Radiofiz., 37, No. 10, 1311 (1994).

    Google Scholar 

  20. G. B. Malykin and V. I. Pozdnyakova, and I. A. Shershevskii, Opt. Spektrosk., 83, No. 5, 843 (1997).

    Google Scholar 

  21. D. Marcuse, Theory of Dielectric Optical Waveguides, Academic Press, New York-London (1974).

    Google Scholar 

  22. I.P. Kaminov, IEEE J. Quantum Electron., QE-17, No. 1, 15 (1981).

    Google Scholar 

  23. S. C. Rashleigh, J. Lightwave Tech., 1, No. 2, 312 (1983).

    Google Scholar 

  24. R.P. Moeller and W.K. Burns, Electron. Lett., 19, No. 5, 187 (1983).

    Google Scholar 

  25. V. V. Kocharovskii, Vl.V. Kocharovskii, Yu.M. Mironov, and V.Yu. Zaitsev, Izv. Ros. Akad. Nauk, Ser. Fiz., 62, No. 2, 362 (1998).

    Google Scholar 

  26. M. Monerie and L. Jeunhomme, Opt. Quantum Electron., 12, No. 6, 449 (1980).

    Google Scholar 

  27. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, Cambridge Univ. Press (1995).

  28. G. B. Malykin, V. I. Pozdnyakova, and I. A. Shereshevskii, Opt. Spektrosk., 88, No. 3, 477 (2000).

    Google Scholar 

  29. E. J. Hannan, Group Representations and Applied Probability, Methuen, London (1965).

  30. U. Grenander, Probabilities on Algebraic Structures [Russian translation], Mir, Moscow (1965).

    Google Scholar 

  31. A. Barut and R. Raczka, Theory of Group Representations and Applications, PWNPolish Scientific Publishers, Warszawa (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malykin, G.B., Pozdnyakova, V.I. & Shereshevsky, I.A. Asymptotic Characteristics of the Evolution of Polarization of Nonmonochromatic Radiation in Single-Mode Optical Fibers with a Random Twisting of Axes of Linear Birefringence. I. Limiting of Polarization in an Infinitely Long Fiber. Radiophysics and Quantum Electronics 43, 879–890 (2000). https://doi.org/10.1023/A:1010305402051

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010305402051

Keywords

Navigation