Skip to main content
Log in

Use of DNA Markers in Prediction of Hybrid Performance and Heterosis for a Three-Line Hybrid System in Rice

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Two Cytoplasmic Male Sterile lines were crossed with fourteen restorer lines of rice widely grown in the western regions of Maharashtra, India, to produce 28 F1 hybrids which were evaluated for eight agronomically important traits, contributing to yield potential, in replicated field trials. The hybrid performance was recorded along with heterosis and heterobeltiosis. All the rice lines under investigation were subjected to marker-based variability analysis. An attempt was made to correlate genetic distance based on specific markers for each trait individually, as well as average genetic distance based on all specific markers, with hybrid performance and heterosis, by regression analysis. Specific markers could cluster the parental lines in different groups and showed significant correlation with hybrid performance. The data also supports the proposition that epistasis is the basis of heterosis. The analysis, however, revealed a lack of significant predictive values for field application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Arcade, A., Faivre-Rampant, P., Le Guerroue, B., Paques, L. E., and Prat, D. (1996). Heterozygosity and hybrid performance in Larch. Theor. Appl. Genet. 93:1274-1281.

    Google Scholar 

  • Barbosa-Neto, J. F., Sorrells, M. E., and Cisar, G. (1996). Prediction of heterosis in wheat using coefficient of parentage and RFLP based estimates of genetic relationship. Genome. 39:1142-1149.

    Google Scholar 

  • Bernardo, R. (1992). Relationship between single-crosses performance and molecular marker heterozygosity. Theor. Appl. Genet. 83:628-634.

    Google Scholar 

  • Boppenmaier, J., Melchinger, A. E., Brunklaus-Jung, E., Geiger, H. H., and Herrmann, R. G. (1993). Genetic distance for RFLPs in European maize inbreds. III, Performance of crosses within versus between heterotic groups for grain traits. Plant Breeding 111:217-226.

    Google Scholar 

  • Cerna, F. J., Cianzio, S. R., Rafalski, A., Tingey, S., and Dyer, D. (1997). Relationship between seed yield heterosis and molecular marker heterozygosity in Soybean. Theor. Appl. Genet. 95:460-467.

    Google Scholar 

  • Charcosset, A. (1992). Proc XIII EUCARPIA Cong. Springer, Berlin Heidelberg New York. 355-369.

    Google Scholar 

  • Chowdari, K. V., Venkatachalam, S. R., Davierwala, A. P., Gupta, V. S., Ranjekar, P. K., and Govila, O. P. (1998). Hybrid performance and genetic distance as revealed by (GATA)4 microsatellite and RAPD markers in Pearlmillet. Theor. Appl. Genet. 97:163-169.

    Google Scholar 

  • Deng, H., and Wang, G. (1984). A study on prediction of heterosis in crops (in chinese). Hunan Agric. Sci. 3:1-5.

    Google Scholar 

  • Diers, B. W., McKetty, P. B. E., and Osborn, T. C. (1996). Relationship between heterosis and genetic distance based on restriction fragment length polymorphism markers in oilseed rape (Brassica napus L). Crop. Sci. 36:79-83.

    Google Scholar 

  • Dudley, J. W., Saghai, Maroof, M. A., and Rufener, G. K. (1991). Molecular markers and grouping of parents in maize breeding programs. Crop. Sci. 31:718-723.

    Google Scholar 

  • Eathington, S. R. (1997). Usefulness of marker-QTL association in early generation selection, Crop. Sci. 37:1686-1693.

    Google Scholar 

  • Gimelfarb, A., and Lande, R. (1995). Marker assisted selection and marker-QTL associations in hybrid populations. Theor. Appl. Genet. 91:522-528.

    Google Scholar 

  • Glaszmann, J. C. (1987). Isozyme and classification of Asian cultivated rice varieties. Theor. Appl. Genet. 74:21-30.

    Google Scholar 

  • Godshalk, E. B., Lee, M., and Lankey, K. R. (1990). Relationship of restriction fragment length polymorphism in single-cross hybrid performance of maize. Theor. Appl. Genet. 80:273-289.

    Google Scholar 

  • Griffing, B. (1956). Concept of general and specific combining ability in relation to diallel crossing system. Aust. J. Biol. Sci. 9:463-493.

    Google Scholar 

  • Gupta, V. S., Ramakrishna, W., Rawat, S. R., and Ranjekar, P. K. (1994). (CAC)5 detects DNA finger-prints and sequences homologous to gene transcripts in rice. Biochem. Genet. 32:1-8.

    Google Scholar 

  • Joshi, S. P., Gupta, V. S., Aggarwal, R. K., Ranjekar, P. K., and Brar, D. S. (2000). Genetic diversity and phylogenetic relationship as revealed by inter simple sequence repeat polymorphism in the genus Oryza. Theor. Appl. Genet. 100:1311-1320.

    Google Scholar 

  • Lee, M., Godshalk, E. B., Lamkey, K. R., and Woodman, W. W. (1989). Association of restriction fragment length polymorphism among maize inbreds with agronomic performance of their crosses. Crop. Sci. 29:1067-1071.

    Google Scholar 

  • Li, Z. B., Xiao, Y. H., Zhu, Y. H., Li, R. Q., Liu, C. L., and Wang, J. M. (1982). The study and practice of hybrid rice (in Chinese). Shanghai Academic and Technical press, Shanghai, China.

    Google Scholar 

  • McCouch, S. R., Chen. X., Panaud, O., Temnykh, S., Xu, Y., Cho, Y. G., Huang, N., Ishii, T., and Blair, M. (1997). Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant Mol. Biol. 35:89-99.

    Google Scholar 

  • Mahalanobis, P. C. (1936). On the generalized distance in statistics. Proc. Nat. Inst. Sci. India 2(1):49-55.

    Google Scholar 

  • Martin, J. M., Talbert, L. E., Lanning, S. P., and Blake, N. K. (1995). Hybrid performance in wheat as related to parental diversity. Crop. Sci. 35:104-108.

    Google Scholar 

  • Melchinger, A. E., Lee, M., Lamkey, K. R., and Woodman, W. W. (1990a). Genetic diversity for restriction fragment length polymorphisms, relation to estimated genetic effects in maize inbreds. Crop. Sci. 30:1033-1040.

    Google Scholar 

  • Melchinger, A. E., Lee, M., Lamkey, K. R., Hallaue, A. R., and Woodman, W. W. (1990b). Genetic diversity for restriction fragment length polymorphisms and heterosis for two diallel sets of maize inbreds. Theor. Appl. Genet. 80:488-496.

    Google Scholar 

  • Melchinger, A. E., Boppenmaier, J., Dhillon, B. S., Pollmer, W. G., and Hermann, R. G. (1992). Genetic diversity for RFLPs in European maize inbreds: II. Relation to performance of hybrids within versus between heterotic groups for forage traits. Theor. Appl. Genet. 84:672-681.

    Google Scholar 

  • Nei, M. (1987). Molecular evolutionary genetics. Columbia University Press, New York.

    Google Scholar 

  • Parsons, B. J., Newbary, H. J., Jackson, M. T., and Ford-Loyd, B. V. (1997). Contrasting genetic diversity relationships are revealed in rice (Oryza sativa L.) using different marker types: Mol. Breeding 3:115-125.

    Google Scholar 

  • Peng, J. Y., Glaszmann, J. C., and Virmani, S. S. (1988). Heterosis and isozyme diversions in Indica rice. Crop. Sci. 28:561-563.

    Google Scholar 

  • Peng, J. Y., Virmani, S. S., and Julfiquar, A. W. (1991). Relationship between heterosis and genetic divergence in rice. Oryza 28:129-133.

    Google Scholar 

  • Ramakrishna, W., Chowdari, K. V., Lagu, M. D., Gupta, V. S., and Ranjekar, P. K. (1995). DNA fingerprinting to detect genetic variation in rice using hypervariable DNA sequences. Theor. Appl. Genet. 90:1000-1006.

    Google Scholar 

  • Ramakrishna, W., Lagu, M. D., Gupta, V. S., and Ranjekar, P. K. (1994). DNA fingerprinting in rice using oligonucleotide probes specific for simple repetitive DNA sequences. Theor. Appl. Genet. 88:402-406.

    Google Scholar 

  • Ribaut, J.-M., and Hoisington, D. (1998). Marker assisted selection: New tools and strategies. Trends in Plant Sciences 3 6:236-239.

    Google Scholar 

  • Rogers, S. O., and Bendich, A. J. (1988). Plant Molecular Biology Manual A6: 1 Ed. Gelvin, S. B. and Schilperoort, R. A., Kulwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Saghai Maroof, M. A., Yang, G. P., Zhang, Q., and Gravois, K. A. (1997). Correlation between molecular marker distance and hybrid performance in U S southern long grain rice. Crop. Sci. 37:145-150.

    Google Scholar 

  • Sant, V. J., Patankar, A. G., Gupta, V. S., Sarode, N. D., Mhase, L. B., Sainani, M. N., Deshmukh, R. B., and Ranjekar, P. K. (1999). Potential of DNA markers in detecting divergence and in analyzing heterosis in Indian chickpea cultivars. Theor. Appl. Genet. 98:1217-1225.

    Google Scholar 

  • Smith, O. S., Smith, J. S. C., Bowen, S. L., Tenborg, R. A., and Wall, S. J. (1990). Similarities among a group of elite maize inbreds as measured by pedigree, F1 grain yield, grain yield heterosis and RFLPs. Theor. Appl. Genet. 80:833-840.

    Google Scholar 

  • Stuber, C. W., Lincoln, S. E., Wolff, D. W., Helentjaris, T., and Lander, E. S. (1992). Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics 132:823-839.

    Google Scholar 

  • Swartz, D. (1989). Users manual, Information resource group, Maryland Biotechnology Institute, University of Maryland, College park, MD 20742 USA.

    Google Scholar 

  • Virmani, S. S. (1994). Prospects of hybrid rice in the tropics and subtropics. In “Hybrid Rice Technology: New developments and future prospects” (Virmani, Ed.), pp 7-19, Int. Rice Res. Inst., Manila Philippines.

    Google Scholar 

  • Wang, Z. W., and Tanksley, S. D. (1989). Restriction fragment length polymorphism in rice (Oryza sativa L) Genome. 32:1113-1118.

    Google Scholar 

  • Yu, L. X., and Nguyen, H. T. (1994). Theor. Appl. Genet. 87:668-672.

    Google Scholar 

  • Yu, S. B., Li, J. X., Xu, C. G., Tan, Y. F., Gao, Y. J., Li, H. X., Zhang, Q., and Saghai Maroof, M. A. (1997). Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc. Natl. Acad. Sci. USA 94:9226-9231.

    Google Scholar 

  • Xiao, J., Li, J., Yuan, L., and Tanksley, S. D. (1995). Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers. Genetics 140:745-754.

    Google Scholar 

  • Xiao, J., Li, J., Yuan, L., McCouch, S. R., and Tanksley, S. D. (1996). Genetic diversity and its relationships to hybrid performance and heterosis in rice as revealed by PCR-based markers. Theor. Appl. Genet. 92:637-643.

    Google Scholar 

  • Zhang, Q. F., Zhou, Z. Q., Yang, G. P., Xu, C. G., Liu, K. D., and Saghai Maroof, M. A. (1996). Molecular marker heterozygosity and hybrid performance in Indica and Japonica rice. Theor. Appl. Genet. 93:1218-1224.

    Google Scholar 

  • Zhang, Q. F., Gao, Y. J., Yang, S. H., Saghai Maroof, M. A., and Li, J. N. (1995). Molecular divergence and hybrid performance in rice. Mol. Breed. 1:133-142.

    Google Scholar 

  • Zhang, Q. F., Gao, Y. J., Yang, S. H., Ragab, R. A., Saghai Maroof, M. A., and Li, Z. B. (1994). A diallele analysis of heterosis in elite hybrid rice based on RFLPs and microsatellites. Theor. Appl. Genet. 89:185-192.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joshi, S.P., Bhave, S.G., Chowdari, K.V. et al. Use of DNA Markers in Prediction of Hybrid Performance and Heterosis for a Three-Line Hybrid System in Rice. Biochem Genet 39, 179–200 (2001). https://doi.org/10.1023/A:1010293325482

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010293325482

Navigation