Skip to main content
Log in

Possible Manifestations of the Graviton Background

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Possible effects are considered which would be caused by a hypothetical superstrong interaction of photons or massive bodies with single gravitons of the graviton background. If full cosmological redshift magnitudes are caused by the interaction, then the luminosity distance in a flat non-expanding universe as a function of redshift is very similar to the specific function which fits supernova cosmology data by Riess et al. From another side, in this case every massive body, slowly moving relatively to the background, would experience a constant acceleration, proportional to the Hubble constant, of the same order as a small additional acceleration of Pioneer 10, 11.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Weinberg, S. (1972). Gravitation and Cosmology (John Wiley and Sons, New York).

    Google Scholar 

  2. Linde, A. D. (1984). Usp. Fiz. Nauk. 144, 177.

    Google Scholar 

  3. Vaucouleurs, G. De. (1970). Astrophys. J. 159, 435.

    Article  Google Scholar 

  4. Bergh, S. van den. (1970). Nature. 255, 503.

    Google Scholar 

  5. Zwicky, F. (1929). Proc. Nat. Acad. Sci. 15, 773.

    Google Scholar 

  6. LaViolette, P. A. (1986). Astrophys. J. 301, 544.

    Google Scholar 

  7. Pahre, M. A. et al. (1996). Astrophys. J. 456, L79.

    Google Scholar 

  8. Phillips, S. (1982). Astrophys. J. 22, 4, 153.

    Google Scholar 

  9. Riess, A. G., et al. (1998). Astron. J. 116, 1009.

    Article  Google Scholar 

  10. Anderson, J. D. et al. (1998). Phys. Rev. Lett. 81, 2858.

    Google Scholar 

  11. J. Ehlers, and H. Friedrich, eds. Berlin, (1994). Canonical Gravity—from Classical to Quantum.

  12. Choi, S. Y. et al. (1993). Phys. Rev. D 48, 2953; R5465; 1995, 51, 2751.

    Google Scholar 

  13. Nieuwenhuizen, van P. (1981). Phys. Rep. 68, 189.

    Google Scholar 

  14. Green, M. B., Schwarz, J. H., and Witten, E. (1987). Superstring Theory (Cambridge University Press, Cambridge, England).

    Google Scholar 

  15. Mauceli, E. et al. (1996). Phys. Rev. D 54, 1264.

    Google Scholar 

  16. Vinet, J.-Y. (1996). Phys. Rev. D 54, 1276.

    Google Scholar 

  17. McHugh, M. P. et al. (1996). Phys. Rev. D 54, 5991.

    Google Scholar 

  18. Bradaschia, C. et al. (1990). Nucl. Instrum. Methods A 289, 518.

    Google Scholar 

  19. Abramovici, A. et al. (1992). Science. 256, 325.

    Google Scholar 

  20. Danzmann, K. et al. (1994). Internal Report MPQ. 190.

  21. Tinto, M. (1996). Phys. Rev. D. 53, 5354.

    Google Scholar 

  22. Hubble, E. P., and Humason (1931). Astrophys. J. 74, 43.

    Google Scholar 

  23. Penzias, A. A., and Wilson, R. W. (1965). Astrophys. J. 142, 419.

    Google Scholar 

  24. Smoot, G. F. (1992). Astrophys. J. 396, L1.

    Google Scholar 

  25. Dwight, H. B. (1961). Tables of Integrals and Other Mathematical Data (The Macmillan Company, New York).

    Google Scholar 

  26. Dehmelt, H., and Nagorney, W. (1988). Proc. Nat. Acad. Sci. USA. 85, 7426.

    Google Scholar 

  27. Ivanov, M. A. Quantum Electronics and Laser Science Conference (QELS'95), May 21–26, 1995, Baltimore, USA; paper number: QThG1.

  28. Ivanov, M. A. European Quantum Electronics Conference (EQEC'96), Sept. 8–13, 1996, Hamburg, Germany; paper number: QWD1.

  29. Tolman, R. C. (1969). Relativity, Thermodynamics and Cosmology (Clarendon Press, Oxford).

    Google Scholar 

  30. Crampton, D. et al. (1995).Astrophys. J. 455, 96.

    Google Scholar 

  31. Gould, A. (1995). Astrophys. J. 455, 37.

    Google Scholar 

  32. Conklin, E. K. (1969). Nature. 222, 971.

    Google Scholar 

  33. Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973). Gravitation (Freeman, San Francisco).

    Google Scholar 

  34. Savel'ev, I. V. (1987). Course of Gen. Physics (Nauka, Moscow).

    Google Scholar 

  35. Okun, L. B. (1989). Leptons and Quarks (Nauka, Moscow), 155.

    Google Scholar 

  36. Ivanov, M. A. (1999). General Rel. Grav., 31, 1431.

    Google Scholar 

  37. Ivanov, M. A. (1992). Nuovo Cimento A 105, 77.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanov, M.A. Possible Manifestations of the Graviton Background. General Relativity and Gravitation 33, 479–490 (2001). https://doi.org/10.1023/A:1010292707285

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010292707285

Navigation