S. M. Avdoshin, V. V. Belov, and V. P. Maslov, Mathematical Aspects of Computational Media Synthesis [in Russian], MIEM, Moscow, 1984.
Google Scholar
V. P. Maslov, Asymptotic Methods for Solving Pseudodi.erential Equations [in Russian], Nauka, Moscow, 1987.
Google Scholar
V. P. Maslov, “On a new superposition principle for optimization problems,” Uspekhi Mat. Nauk [Russian Math. Surveys], 42 (1987), no. 3, 39-48.
Google Scholar
V. P. Maslov, Méthodes opératorielles, Mir, Moscow, 1987.
Google Scholar
S. M. Avdoshin, V. V. Belov, V. P. Maslov, and A. M. Chebotarev, “Design of computational media: mathematical aspects,” in: Mathematical Aspects of Computer Engineering (V. P. Maslov and K. A. Volosov, editors), Mir, Moscow, 1988, pp. 9-145.
Google Scholar
Idempotent Analysis (V. P. Maslov and S. N. Samborskii, editors), Adv. Sov. Math., vol. 13, Amer. Math. Soc., Providence (R.I.), 1992.
V. P. Maslov and V. N. Kolokoltsov, Idempotent Analysis and Its Application to Optimal Control [in Russian], Nauka, Moscow, 1994.
Google Scholar
V. N. Kolokoltsov and V. P. Maslov, Idempotent Analysis and Applications, Kluwer Acad. Publ., Dordrecht, 1997.
Google Scholar
G. L. Litvinov and V. P. Maslov, Correspondence Principle for Idempotent Calculus and Some Computer Applications (IHES/M/95/33), Institut des Hautes Études Scientifiques, Bures-sur-Yvette, 1995, in: Idempotency (J. Gunawardena, editor), Publ. of the Newton Institute, Cambridge Univ. Press, Cambridge, 1998, pp. 420-443; see also E-print http://arXiv.org/abs/math/0101021.
Google Scholar
G. L. Litvinov and V. P. Maslov, “Idempotent mathematics: the correspondence principle and its applications to computing,” Uspekhi Mat. Nauk [Russian Math. Surveys], 51 (1996), no. 6, 209-210.
Google Scholar
P. I. Dudnikov and S. N. Samborskii, “Endomorphisms of semimodules over semirings with idempotent operation,” Izv. Akad. Nauk SSSR Ser. Mat. [Math. USSR-Izv.], 55 (1991), no. 1, 91-105.
Google Scholar
F. L. Bacelli, G. Cohen, G. J. Olsder, and J.-P. Quadrat, Synchronization and Linearity: an Algebra for Discrete Event Systems, J. Wiley, New York, 1992.
Google Scholar
Idempotency (J. Gunawardena, editor), Publ. of the Newton Institute, Cambridge Univ. Press, Cambridge, 1998.
Google Scholar
M. A. Shubin, Algebraic Remarks on Idempotent Semirings and the Kernel Theorem in Spaces of Bounded Functions [in Russian], Institute for New Technologies, Moscow, 1990; English transl. in [6].
Google Scholar
S. C. Kleene, “Representation of events in nerve nets and.nite automata,” in: Automata Studies (J. McCarthy and C. Shannon, editors), Princeton Univ. Press, Princeton, 1956, pp. 3-40.
Google Scholar
B. A. Carré, “An algebra for network routing problems,” J. Inst. Math. Appl., 7 (1971), 273-294.
Google Scholar
B. A. Carré, Graphs and Networks, Oxford Univ. Press, Oxford, 1979.
Google Scholar
M. Gondran and M. Minoux, Graphes et algorithmes, Eyrolles, Paris, 1979.
Google Scholar
R. A. Cuningham-Green, Minimax Algebra, Springer Lect. Notes in Economics and Math. Systems, vol. 166, 1979.
U. Zimmermann, Linear and Combinatorial Optimization in Ordered Algebraic Structures, vol. 10, Ann. Discrete Math., 1981.
J. S. Golan, Semirings and Their Applications, Kluwer Acad. Publ., Dordrecht, 1999.
Google Scholar
General Algebra (L. A. Skornyakov, editor) [in Russian], Mathematics Reference Library, vol. 1, Nauka, Moscow, 1990; vol. 2, ibid., 1991.
Google Scholar
G. Birkho., Lattice Theory, Amer. Math. Soc., Providence, 1967.
B. Z. Vulikh, Introduction to the Theory of Semiordered Spaces [in Russian], Fizmatgiz, Moscow, 1961.
Google Scholar
M. M. Day, Normed Linear Spaces, Springer, Berlin, 1958.
Google Scholar
H. H. Schaefer, Topological Vector Spaces, Macmillan, New York-London, 1966.
Google Scholar
L. Fuchs, Partially Ordered Algebraic Systems, Pergamon Press, Oxford, 1963.
Google Scholar
P. Del Moral, “A survey of Maslov optimization theory,” in: Idempotent Analysis and Applications (V. N. Kolokoltsov and V. P. Maslov, editors), Kluwer Acad. Publ., Dordrecht, 1997.
Google Scholar
T. Huillet, G. Rigal, and G. Salut, Optimal Versus Random Processes: a General Framework, IFAC World Congress, Tallin, USSR, 17-18 August 1990; CNRS-LAAS Report no. 242 89251, juillet 1989, 6p., Toulouse, 1989.
Google Scholar
Proc. of the 11th Conf. on Analysis and Optimization of Systems: Discrete Event Systems (G. Gohen and J.-P. Quadrat, editors), vol. 199, Lect. Notes in Control and Inform. Sciences, Springer, 1994.
Google Scholar
P. Del Moral, J.-Ch. Noyer, and G. Salut, “Maslov optimization theory: stochastic interpretation, particle resolution,” in: Proc. of the 11th Conf. on Analysis and Optimization of Systems: Discrete Event Systems, vol. 199, Lect. Notes in Control and Inform. Sciences, 1994, pp. 312-318.
Google Scholar
M. Akian, J.-P. Quadrat, and M. Voit, “Bellman processes,” in: Proc. of the 11th Conf. on Analysis and Optimization of Systems: Discrete Event Systems, vol. 199, Springer Lecture Notes in Control and Inform. Sciences, 1994.
J. P. Quadrat and Max-Plus working group, “Max-plus algebra and applications to system theory and optimal control,” in: Proc. of the Internat. Congress of Mathematicians, Zürich, 1994.
M. Akian, J.-P. Quadrat, and M. Voit, “Duality between probability and optimization,” in: Idempotency (J. Gunawardena, editor), Publ. of the Newton Institute, Cambridge Univ. Press, Cambridge, 1998, pp. 331-353.
Google Scholar
P. Del Moral, “Maslov optimization theory. Topological aspects,” in: Idempotency (J. Gunawardena, editor), Publ. of the Newton Institute, Cambridge Univ. Press, Cambridge, 1998, pp. 354-382.
Google Scholar
M. Hasse, “ Über die Behandlung graphentheoretischer Probleme unter Verwendung der Matrizenrechnung,” Wiss. Z. (Techn. Univer. Dresden), 10 (1961), 1313-1316.
Google Scholar
J. W. Leech, Classical Mechanics, Methuen, London, J. Wiley, New York, 1961.
Google Scholar
R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, McGraw-Hill, New York, 1965.
Google Scholar
G. W. Mackey, The Mathematical Foundations of Quantum Mechanics. A Lecture-Note Volume, W. A. Benjamin, New York-Amsterdam, 1963.
Google Scholar
E. Nelson, Probability Theory and Euclidian Field Theory, Constructive Quantum Field Theory, vol. 25, Springer, Berlin, 1973.
Google Scholar
A. N. Vasil'ev, Functional Methods in Quantum Field Theory and Statistics [in Russian], Leningrad Gos. Univ., Leningrad, 1976.
Google Scholar
S. Samborskii, “The Lagrange problem from the point of view of idempotent analysis,” in: Idempotency (J. Gunawardena, editor), Publ. of the Newton Institute, Cambridge Univ. Press, Cambridge, 1998, pp. 303-321.
Google Scholar
V. P. Maslov and S. N. Samborskii, “Boundary-value problems for the stationary Hamilton-Jacobi and Bellman equations,” Ukrain. Mat. Zh. [Ukrainian Math. J.], 49 (1997), no. 3, 433-447.
Google Scholar
V. P. Maslov, “A new approach to generalized solutions of nonlinear systems,” Dokl. Akad. Nauk SSSR [Soviet Math. Dokl.], 292 (1987), no. 1, 37-41.
Google Scholar
B. Banaschewski and E. Nelson, “Tensor products and bimorphisms,” Canad. Math. Bull., 19 (1976), no. 4, 385-402.
Google Scholar
N. Bourbaki, Topologie Générale. Éléments de Mathématique, 1ére partie, Livre III, Hermann, Paris, 1960.
Google Scholar
V. M. Tikhomirov, “Convex analysis,” in: Current Problems in Mathematics. Fundamental Directions [in Russian], vol. 14, Itogi Nauki i Tekhniki, VINITI, Moscow, 1987, pp. 5-101.
Google Scholar
J. R. Giles, Convex Analysis with Application in the Di.erentiation of Convex Functions, Pitman Publ., Boston-London-Melbourne, 1982.
Google Scholar
J. Gunawardena, “An introduction to idempotency,” in: Idempotency (J. Gunawardena, editor), Publ. of the Newton Institute, Cambridge Univ. Press, Cambridge, 1998, pp. 1-49.
Google Scholar
G. A. Sarymsakov, Topological Semifields [in Russian], Fan, Tashkent, 1969.
Google Scholar
S. Eilenberg, Automata, Languages and Machines, Academic Press, 1974.
J. H. Conway, Regular Algebra and Finite Machines, Chapman and Hall Math. Ser., London, 1971.
Google Scholar
K. I. Rosenthal, Quantales and Their Applications, Pitman Research Notes in Math., Longman, 1990.
A. Joyal and M. Tierney, “An extension of the Galois theory of Grothendieck,” Mem. Amer. Math. Soc., 51 (1984), no. 309, VII.
S. N. Pandit, “A new matrix calculus,” SIAM J. Appl. Math., 9 (1961), no. 4, 632-639.
Google Scholar
N. N. Vorob'ev, “The extremal matrix algebra,” Dokl. Akad. Nauk SSSR [Soviet Math. Dokl.], 152 (1963), no. 1, 24-27.
Google Scholar
N. N. Vorob'ev, “The extremal algebra of positive matrices” [in Russian], Elektronische Informationsverarbeitung und Kybernetik, 3 (1967), 39-71.
Google Scholar
N. N. Vorob'ev, “The extremal algebra of nonnegative matrices” [in Russian], Elektronische Informationsverarbeitung und Kybernetik, 6 (1970), 302-312.
Google Scholar
A. A. Korbut, “Extremal spaces,” Dokl. Akad. Nauk SSSR [Soviet Math. Dokl.], 164 (1965), no. 6, 1229-1231.
Google Scholar
K. Zimmermann, “A general separation theorem in extremal algebras,” Ekonomicko-Matematicky Obzor (Prague), 13 (1977), no. 2, 179-201.
Google Scholar
G. Cohen, S. Gaubert, and J.-P. Quadrat, “Hahn-Banach separation theorem for Max-Plus semimodules,” to appear in: Proc. of “Conférence en l'honneur du Professeur Alain Bensoussan à l'occasion de son 60ème anniversaire, 4-5 dec. 2000, Paris, to be published by IOS, the Netherlands.
P. Butkovič, “Strong regularity of matrices-A survey of results,” Discrete Applied Math., 48 (1994), 45-68.
Google Scholar
V. Kolokoltsov, “Idempotent structures in optimization,” in: Surveys in Modern Mathematics and Applications, vol. 65, Proc. of L. S. Pontryagin Conference, Optimal Control, Itogi Nauki i Tehniki, VINITI, Moscow, 1999, pp. 118-174.
Google Scholar
R. Bellman and W. Karush, “On a new functional transform in analysis: the maximum transform,” Bull. Amer. Math. Soc., 67 (1961), 501-503.
Google Scholar
I. V. Romanovskii, “Optimization of the stationary control for a discrete deterministic process” [in Russian], Kibernetika (1967), no. 2, 66-78.
Google Scholar
I. V. Romanovskii, “Asymptotic behavior of a discrete deterministic process with a continuous state space” [in Russian], Optimal planning, Trudy IM SO Akademii Nauk SSSR, 8 (1967), 171-193.
Google Scholar
E. Schrödinger, “Quantization as an eigenvalue problem” [in German], Annalen der Physik, 364 (1926), 361-376.
Google Scholar
E. Hopf, “The partial differential equation u
t
+ uu
x
= µu
xx
,” Comm. Pure Appl. Math., 3 (1950), 201-230.
Google Scholar
P.-L. Lions, Generalized Solutions of Hamilton-Jacobi Equations, Pitman, Boston, 1982.
Google Scholar
M. G. Crandall, H. Ishii, and P.-L. Lions, “A user's guide to viscosity solutions,” Bull. Amer. Math. Soc., 27 (1992), 1-67.
Google Scholar
W. H. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity Solutions, Springer, New York, 1993.
Google Scholar
A. I. Subbotin, “Minimax solutions of first-order partial differential equations,” Uspekhi Mat. Nauk [Russian Math. Surveys], 51 (1996), no. 2, 105-138.
Google Scholar
Viscosity Solutions and Applications (I. Capuzzo Dolcetta and P.-L. Lions, editors), vol. 1660, Lecture Notes in Math., Springer, 1997.
P. D. Lax, “Hyperbolic systems of conservation laws II,” Comm. Pure Appl. Math., 10 (1957), 537-566.
Google Scholar
O. A. Oleinik, “Discontinuous solutions of nonlinear differential equations” [in Russian], Uspekhi Mat. Nauk, 12 (1957), no. 3, 3-73.
Google Scholar
O. Viro, “Dequantization of real algebraic geometry on a logarithmic paper,” 3rd European Congress of Mathematics, E-print http://arXiv.org/abs/math/0005163.
G. L. Litvinov, V. P. Maslov, and G. B. Shpiz, “Linear functionals on idempotent spaces. Algebraic approach,” Dokl. Ross. Akad. Nauk [Russian Acad. Sci. Dokl. Math.]. 363 (1998), no. 3, 298-300; see also E-print http://arXiv.org/abs/math/0012268.
Google Scholar
G. L. Litvinov, V. P. Maslov, and G. B. Shpiz, Idempotent Functional Analysis: An Algebraic Approach [in Russian], Internat. Sophus Lie Center, Moscow, 1998.
Google Scholar
G. L. Litvinov, V. P. Maslov, and G. B. Shpiz, Idempotent Functional Analysis: An Algebraic Approach, E-print http://arXiv.org/abs/math/0009128. 2000.
G. L. Litvinov, V. P. Maslov, and G. B. Shpiz, “Tensor products of idempotent semimodules. An algebraic approach,” Mat. Zametki [Math. Notes], 65 (1999), no. 4, 572-585; see also E-print http: // arXiv.org/abs/math/0101153.
Google Scholar
A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, vol. 16, Mem. Amer. Math. Soc, Amer. Math. Soc., Providence, 1955.