Skip to main content
Log in

Projective Relativity: Present Status and Outlook

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We give a critical analysis of projective relativity theory. Examining Kaluza's own intention and the following development by Klein, Jordan, Pauli, Thiry, Ludwig and others, we conclude that projective relativity was abused in its own terms and much more in the case of newer higher dimensional Kaluza–Klein theories with non-Abelian gauge groups. Reviewing the projective formulation of the Jordan isomorphy theorem yields some hints how one can proceed in a different direction. We can interpret the condition \(\mathop R\limits^5 _{\mu \nu } = 0\) not as a field equation in a 5-dimensional Riemannian space, e.g. as vacuum Einstein-Hilbert equation, but can (or should) interpret it as a geometrical object, a null-quadric. Projective aspects of quantum (field) theory are discussed under this viewpoint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Ablamowicz, R., Lounesto, P. (1996). On Clifford Algebras of a Bilinear Form with Antisymmetric Part, in “Clifford Algebras with Numeric and Symbolic Computations,” R. Ablamowicz, P. Lounesto, J. M. Parra, eds. (Birkhäuser, Boston), p. 167–188.

  2. Ball, R. S. (1904). Some Extensions on the Theory of Screws, Trans. Roy. Irish Acad. 32, 299–366.

    Google Scholar 

  3. Barnabei, M., Brini, A. Rota, G.-C. (1985), On the Exterior Calculus of Invariant Theory, J. Alg. 96, 120–160.

    Google Scholar 

  4. Birkhoff, G., von Neumann, J. (1936). Ann. of Math. 37(4) 823.

    Google Scholar 

  5. Cartan, É. (1981). The Theory of Spinors, Hermann, Paris 1966 reprint by Dover, New York.

  6. Cartan, É. (1913). Les Groupes Projective Qui ne Laissent Invariante Aucune Multiplicité Plane, Bull. de la Soc. Math. de France T.41, 53–96.

    Google Scholar 

  7. Cartan, É. (1925). Le Principle de Dualité et la Théorie des Groups Simple et Semi-Simple, Bull. des Sci. Math. Sér. 2(49) 361–374.

    Google Scholar 

  8. Clifford, W. K. (1968). Mathematical papers, reprinted from the 1882 edition by Chelsea Publ. Comp., New York.

  9. Conradt, O. (2000). The Principle of Duality in Clifford Algebra and Projective Geometry, in “Clifford Algebras and Their Applications in Mathematical Physics”, R. Ablamowicz, B. Fauser Eds. (Birkhäuser, Boston), p. 157–193.

  10. Conradt, O. (2000). Mechanics in Space and Counterspace, J. Math. Phys. 41(10) 6995–7028.

    Google Scholar 

  11. Conradt O. (2000). Mathematical Physics in Space and Counterspace, Thesis, University of Basel.

  12. Dirca, P. A. M. (1933) Homogenous Variables in Classical Dynamics, Proc. Camb. Phil. Soc. 29 389–400.

    Google Scholar 

  13. Doubilet, P., Rota, G.-C., Stein, J. A. (1974). On the Foundation of Combinatorial Theory: IX Combinatorial Methods in Invariant Theory, Studies in Appl. Mathematics, Vol. LIII(3), 185–216.

    Google Scholar 

  14. Doran, C., Hestenes, D., Sommen, F., Van Acker, N. (1993). Lie Groups as Spin Groups, J. Math. Phys. 34(8), 3642–3669.

    Google Scholar 

  15. Fauser, B. (1996). Clifford-algebraische Formulierung und Regularität der Quantenfeldtheorie, Thesis, Uni. T¨ubingen.

  16. Fauser, B., and Stumpf, H. (1997). Positronium as an Example of Algebraic Composite Calculations, in Proc. of “The Theory of the Electron”, J. Keller, Z. Oziewicz Eds., Cuautitlan, Mexico, 1995, Adv. Appl. Clifford Alg. 7(Suppl.), 399–418.

  17. Fauser, B. Clifford Geometric Parameterization of Inequivalent Vacua, preprint (hepth/9710047).

  18. Fauser, B. (1998). Dirac Theory from a Field Theoretic Point of View, Proc. “Clifford Algebras and Their Applications in Mathematical Physics,” Aachen 1996, V. Dietrich, K. Habetha, G. Jank, eds. (,Kluwer, Dordrecht).

    Google Scholar 

  19. Fauser, B. (1996). Clifford Algebraic Remark on the Mandelbrot Set of Two-Component Number Systems, Adv. Appl. Clifford Alg. 6(1), 1–26.

    Google Scholar 

  20. Fauser, B. (1998). On an Easy Transition from Operator Dynamics to Generating Functionals by Clifford Algebras, J. Math. Phys. 39, 4928–4947.

    Google Scholar 

  21. Fauser, B. (1996). Vertex Normal Ordering as a Consequence of Nonsymmetric Bilinear Forms in Clifford Algebras, J. Math. Phys. 37, 72–83.

    Google Scholar 

  22. Fauser, B., Ablamowicz, R. (2000). On the Decomposition of Clifford Algebras with Arbitrary Bilinear Form in “Clifford Algebras and Their Applications in Mathematical Physics”, Vol. 1, Algebra and general, R. Ablamowicz, B. Fauser, eds. (Birkhäuser, Boston).

  23. Fauser, B. (2001). On the Hopf Algebraic Origin of Wick Normal-Ordering, hep-th/0007032, J. Phys. A: Math. Gen. 34, 105–115.

    Google Scholar 

  24. Gilmore, R. (1974). Lie Groups, Lie Algebras and Some of Their Applications, (Wiley-Interscience, New York).

    Google Scholar 

  25. Grassmann, H. (1878). Die lineale Ausdehnungslehre [1844], 2nd ed. with notes by Grassmann, Verlag Otto Wigand, Leipzig.

  26. Gschwind, P. (1986). Raum Zeit Geschwindigkeit, Mathematisch-Astronomische Sektion am Goetheanum, Dornach CH.

    Google Scholar 

  27. Gschwind, P. (1991). Der lineare Komplex—eineüberimaginäre Zahl, Philosophisch-Anthroposophischer Verlag am Goetheanum, Dornach CH.

    Google Scholar 

  28. Gschwind, P. (1989). Methodische Grundlagen zu einer Projektiven Quantenmechanik, Philosophisch-Anthroposophischer Verlag am Goetheanum, Dornach CH.

    Google Scholar 

  29. Harnett, G. (1991). Metrics and Dual Operators, J. Math. Phys. 31(1), 84–91.

    Google Scholar 

  30. Harnett, G. (1992).The Bivector Clifford Algebra and the Geometry of Hodge Dual Operators, J. Phys. A: Math. Gen. 25, 5649–5662.

    Google Scholar 

  31. Hehl, F. W., Obukhov, Y. N., Rubilar, G. F. Spacetime Metric from Linear Electrodynamics II, preprint gr-qc/9911096.

  32. Hessenberg, G. (1917). Vektorielle Begründung der Differentialgeometrie, Math. Ann. Bd. 78, 187–217.

    Google Scholar 

  33. Hestenes, D. (1966). Space Time Algebra, Gordon and Breach, New York.

    Google Scholar 

  34. Hestenes, D. (1992). Mathematical Viruses, in “Clifford Algebras and Their Applications in Mathematical Physics” Montpellier 1989, A. Micali, R. Boudet, J. Helmstetter, eds. (Kluwer Academic, Dordrecht), 3–16.

    Google Scholar 

  35. Hestenes, D. (1991). The Design of Linear Algebra and Geometry, Acta Appl. Math. 23, 65–93.

    Google Scholar 

  36. Hestenes, D., and Ziegler, R. (1991). Projective Geometry with Clifford Algebra, Acta Appl. Math. 23, 25–64.

    Google Scholar 

  37. Joni, S. A., and Rota, G.-C. (1979). Coalgebras and bialgebras in combinatorics, Studies in Appl. Math. 61, 93–139.

    Google Scholar 

  38. Jordan, P. (1955). Schwerkraft und Weltall, Vieweg und Sohn, Braunschweig.

    Google Scholar 

  39. Kadison, L., and Kromann, M. T. (1996). Projective Geometry and Modern Algebra Birkh¨auser—Boston.

  40. Kaluza, Th. (1918). Zum Unitäetsproblem der Physik, Sitzungsber. d. Preuss. Akad. d. Wiss. Berlin 204.

  41. Kaluza, Th. (1987). On the Unity Problem of Physics, in “Modern Kaluza Klein theories” Th. Appelquist, A. Chodos, P.G.O. Freund, eds. (Addison-Wesley), p. 61.

  42. Kreimer, D. (2000). Knots and Feynman Diangrams, Cambridge Lecture Notes in Physics, Cambridge Univ. Press, Cambridge.

    Google Scholar 

  43. Lessner, G. (1982). Unified Field Theory an the Basis of the Projective Theory of Relativity, Phys. Rev. D 25, 1982, 3202–3217.

    Google Scholar 

  44. Lie, S., Engel, F. Theorie der Transformationsgruppen, Teubner, Leipzig, 1888–1893, Vol. I, II, III.

  45. Ludwig, G. (1951). Fortschritte der Projektiven Relativitätstheorie, Fr. Vieweg und Sohn, Braunschweig.

    Google Scholar 

  46. Macias, A., and Dehnen, H. (1992). Dirac Field in the Eight-Dimensional Kaluza–Klein Theory, Mod. Phys. Lett. A, Vol. 7, 103–116.

    Google Scholar 

  47. Obukhov, Y. N., Hehl, F. W. Spacetime Metric from Linear Electrodynamics I, preprint grqc/9904067.

  48. Oziewicz, Z. (1986). From Grassmann to Clifford in Proceedings “Clifford Algebras and their Application in Mathematical Physics”, Canterbury, UK, J.S.R. Chisholm, A.K. Common, eds. (Kluwer, Dordrecht), p. 245–256.

    Google Scholar 

  49. Oziewicz, Z. (1997). Clifford Algebra of Multivectors, Proc. Int. Conf. on “The Theory of the Electron”, (Cuautitlan, Mexico, 1995). J. Keller and Z. Oziewicz Eds., Adv. in Appl. Clifford Alg. 7(Suppl.), 467–486.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fauser, B. Projective Relativity: Present Status and Outlook. General Relativity and Gravitation 33, 875–887 (2001). https://doi.org/10.1023/A:1010259908844

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010259908844

Navigation