Skip to main content
Log in

Clumps into Voids

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We consider a spherically symmetric distribution of dust and show that it is possible, under general physically reasonable conditions, for an overdensity to evolve to an underdensity (and vice versa). We find the conditions under which this occurs and illustrate it on a class of regular Lemaître–Tolman–Bondi (LTB) solutions. The existence of this phenomenon, if verified, would have the result that the topology of density contours, assumed fixed in standard structure formation theories, would have to change and that luminous matter would not trace the dark matter distribution so well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Arnau, J. V., Fullana, M. J., Monreal, L., and Saez, D. (1993). Astrophys. J. 402, 359.

    Article  Google Scholar 

  2. Bondi, H. (1947). Mon. Not. Roy. Astron. Soc. 107, 410.

    Google Scholar 

  3. Coles, P. (1999). Nature 398, 288.

    Article  Google Scholar 

  4. Ellis, G. F. R., Hellaby, C., and Matravers, D. R. (1990). Astrophys. J. 364, 400.

    Article  Google Scholar 

  5. Hellaby, C. (1994). Phys. Rev. D 49, 6484.

    Google Scholar 

  6. Hellaby, C., and Lake, K. (1985). Astrophys. J. 290, 381–9 and errata in (1986) ibid 300, 461.

    Google Scholar 

  7. Hellaby, C. (1987) Class. Quant. Grav. 4, 635.

    Google Scholar 

  8. Hudson, M. J., Smith, R. J., Lucey, J. R., Schlegel, D. J., and Davies, R. L. (1999). Astrophys. J. 512, L79.

    Google Scholar 

  9. Lake, K., and Pim, R. (1985). Astrophys. J. 298, 439.

    Google Scholar 

  10. Lemaître, G. (1931). Mon. Not. Roy. Acad. Sci. 91, 483.

    Google Scholar 

  11. Maeda, K., Sasaki, M., and Sato, H. (1983). Progr. Theor. Phys. 69, 89.

    Google Scholar 

  12. Occhionero, F., Vignato, A., and Vittorio, N. (1978). Astron. and Astroph. 70, 265.

    Google Scholar 

  13. Padmanabhan, T. (1993), Structure Formation in the Universe (Cambridge: Cambridge University Press).

    Google Scholar 

  14. Pim, R., and Lake, K. (1986). Astrophys. J. 304, 75.

    Google Scholar 

  15. Raine, D. J., and Thomas, E. G. (1981). Mon. Not. Roy. Astron. Soc. 195, 649.

    Google Scholar 

  16. Rubin, V. C., and Coyn, G. V., S. J. (1988). Large-Scale Motions in the Universe (Princeton: Princeton University Press).

    Google Scholar 

  17. Sato, H. (1984). in: General Relativity and Gravitation. eds. B. Bertotti, F. de Felice and A. Pascolini (Dordrecht: Reidel), 289.

    Google Scholar 

  18. Silk, J. (1977). Astron. and Astroph. 59, 53.

    Google Scholar 

  19. Tolman, R. C. (1934). Proc. Nat. Acad. Sci. 20, 169.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mustapha, N., Hellaby, C. Clumps into Voids. General Relativity and Gravitation 33, 455–477 (2001). https://doi.org/10.1023/A:1010240723215

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010240723215

Navigation