Skip to main content
Log in

Distributional Modes for Scalar Field Quantization

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We propose a mode-sum formalism for the quantization of the scalar field based on distributional modes, which are naturally associated with a slight modification of the standard plane-wave modes. We show that this formalism leads to the standard Rindler temperature result, and that these modes can be canonically defined on any Cauchy surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Manogue, C. A., Dray, T., and Copeland, E. (1988). The Trousers Problem Revisited, Pramãna—J. Phys. 30, 279–292.

    Google Scholar 

  2. Fulling, S. A. (1989). Aspects of Quantum Field Theory in Curved Space-Time, Cambridge University Press, Cambridge.

    Google Scholar 

  3. Fischer, J. (1998). A New Look at the Ashtekar-Magnon Energy Condition, Ph.D. Dissertation, Oregon State University.

  4. Fischer, J., and Dray, T. (1999). A New Look at the Ashtekar-Magnon Energy Condition, Gen. Rel. Grav. 31, 511.

    Article  Google Scholar 

  5. Birrell, N. D., and Davies, P. C. W. (1982). Quantum Fields in Curved Space, Cambridge University Press, Cambridge.

    Google Scholar 

  6. Kay, B. S., Radzikowski, M. J., and Wald, R. M. (1997). Commun. Math. Phys. 183, 533.

    Article  Google Scholar 

  7. Kay, B. S. (1996). Quantum Fields in Curved Spacetime: Non Global Hyperbolicity and Locality, in: Proceedings of the Conference Operator Algebras and Quantum Field Theory, eds. S. Doplicher, R. Longo, J. Roberts, L. Zsido, International Press, MA.

    Google Scholar 

  8. Hawking, S. W. (1992). Phys. Rev. D 46, 603.

    Article  Google Scholar 

  9. Dray, T., and Manogue, C. A. (1988). Bogolubov Transformations and Completeness, Gen. Rel. Grav. 20, 957–965.

    Google Scholar 

  10. Roman, P. (1969). Introduction to Quantum Field Theory, Wiley, New York.

    Google Scholar 

  11. Dray, T., and Manogue, C. A. (1987). The Scalar Field in Curved Space, Institute of Mathematical Sciences report no. 112, Madras, 83 pages.

  12. Unruh, W. (1976). Notes on Black Hole Evaporation, Phys. Rev. D 14, 870.

    Google Scholar 

  13. Wald, R. M. (1994). Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics, University of Chicago Press, Chicago.

    Google Scholar 

  14. Dimock, J. (1980). Commun. Math. Phys. 77, 219.

    Google Scholar 

  15. Choquet-Bruhat, Y. (1968). Hyperbolic Differential Equations on a Manifold, in: Battelle Recontres: 1967 Lectures in Mathematics and Physics, eds. C. M. DeWitt and J. A. Wheeler, Benjamin, NY.

    Google Scholar 

  16. Boersma, S. and Dray, T. (1995). Slicing, Threading and Parametric Manifolds, Gen. Rel. Grav. 27, 319–339.

    Google Scholar 

  17. Agnew, A. F. (1999). Distributional Modes for Curved Space Quantum Field Theory, Ph.D. Dissertation, Oregon State University.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agnew, A.F., Dray, T. Distributional Modes for Scalar Field Quantization. General Relativity and Gravitation 33, 429–453 (2001). https://doi.org/10.1023/A:1010236506377

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010236506377

Navigation